Экологический эффект от применения возобновляемых источников энергии. Повышение плодородия почвы за счет виэ

Экология потребления.Наука и техника:Эта статья является продолжением темы развития энергетики на основе возобновляемых источников энергии (ВИЭ). Речь идёт о вкладе энергетики на возобновляемых источниках в эмиссию парниковых газов и, в целом, побочных экологических эффектах развития энергетики на основе ВИЭ.

Эта статья является продолжением темы развития энергетики на основе возобновляемых источников энергии (ВИЭ). Речь идёт о вкладе энергетики на возобновляемых источниках в эмиссию парниковых газов и, в целом, побочных экологических эффектах развития энергетики на основе ВИЭ. В ряде случаев отрицательные последствия возобновляемой энергетики для среды и общества могут быть велики - вопреки заявленным целям об улучшении экологических показателей, и каждый проект требует отдельного тщательного анализа. В целом, положительные и отрицательные экологические эффекты энергетики на ВИЭ - вопрос, ещё требующий дополнительных комплексных исследований.

Климатический аспект развития возобновляемой энергетики связан с «нулевой эмиссией CO2» при работе солнечных, ветряных, гидравлических и других энергетических станций на возобновляемых ресурсах. Действительно, в данных случаях выработка энергии идёт без сжигания углеводородного сырья и, как следствие, без выделения парниковых газов и других загрязнителей в атмосферу.

Однако ситуация сложнее, если рассматривать весь жизненный цикл производства, начиная с подготовительных стадий и включая побочные эффекты в процессе выработки энергии.

Для получения энергии необходимы изготовление и установка энергетического оборудования, создание инфраструктуры и обеспечение условий для его работы, подготовка сырья, утилизация отработанного материала и оборудования по истечении срока службы. Это требует работы металлургических, машиностроительных, сельскохозяйственных и других предприятий, использования энергии из ископаемых источников, и означает уже ненулевую эмиссию.

Учёт воздействий на окружающую среду на всех стадиях показывает, что переход к возобновляемой энергетике не всегда ведёт к снижению загрязнения среды, в том числе к снижению эмиссии CO2 и других парниковых газов.

Исследования побочных эффектов (в том числе экологических) возобновляемой энергетики в комплексе имеют сравнительно недавнюю историю, а в последнее время об этом заговорили активнее. Одна из недавних заметных работ - труд норвежского исследователя, научного сотрудника и руководителя проектов Западно-норвежского исследовательского института (Western Norway Research Institute, WNRI) Отто Андерсена (Otto Andersen) «Непреднамеренные последствия возобновляемой энергетики. Проблемы, требующие решения». Работа Андерсена использует ранее собранную разными исследователями информацию по отдельным видам энергии и регионам, на основе которых выстраивается обобщённая картина экологических рисков возобновляемой энергетики.

Ключевые понятия и подходы связаны с анализом жизненного цикла (Life Cycle Analysis, LCA) и оценкой так называемых «встречных эффектов», «эффектов отскока» или «обратных эффектов» - rebound effects, что в отечественной литературе переводят как «восстановительные эффекты» или, без перевода, «ребаунд-эффекты».

Основное внимание с позиций анализа жизненного цикла и встречных эффектов уделено биоэнергетике (выращиванию энергетических культур для производства биотоплива), солнечной фотовольтаической энергетике, некоторым аспектам водородной энергетики и использованию электромобилей.

Ряд вопросов остаётся открытым, исследования побочных эффектов в возобновляемой энергетике пока нельзя назвать достаточно хорошо изученной темой, хотя в предыдущие годы по данной тематике был проведён ряд локальных исследований и экспериментов.

Возобновляемая энергетика и эмиссия парниковых газов

Если говорить об эмиссии парниковых газов, то разные виды возобновляемой энергетики, по выражению Андерсена, вовсе не являются «равнозелёными» (equally green), если рассматривать их с позиций полного жизненного цикла. Основной показатель, с точки зрения эмиссии парниковых газов, связанной с производством энергии, используемый в том числе Андерсоном, - это количество грамм-эквивалента СО2 на единицу произведённой энергии, в частности, для электроэнергетики принимается 1 кВт·ч, то есть гСО2экв/кВт·ч.

В данном случае важна методика расчёта и исходные допущения - прежде всего, для какого интервала времени идёт расчёт, а также загрузка производственных мощностей (коэффициент использования установленной мощности, то есть КИУМ) и, соответственно, ожидаемая выработка энергии за определённый промежуток времени. Картина здесь та же, что и с расчётом выровненных затрат (Levelized Costs, LC) на производство единицы энергии. Чаще всего используется 20-летний интервал.

Анализ жизненного цикла даёт следующие показатели эмиссии для разных типов производства электрической энергии [гСО2экв/кВт·ч]: ветряная - 12; приливная - 15; гидравлическая - 20; океаническая волновая - 22; геотермальная - 35; солнечные (фотовольтаические) батареи - 40; солнечные концентраторы - 10; биоэнергетика - 230.

Это, однако, в любом случае на порядок меньше величин, приводимых для энергетики, работающей на ископаемом сырье : угольная - 820; газовая - 490. В то же время, самой «экологически безопасной», в данном смысле, является атомная энергетика, где показатель эмиссии гСО2экв/кВт·ч составляет всего 12, то есть этот параметр равен самым низким показателям энергетики на возобновляемых источниках. Очевидно, что распределение эмиссии парниковых газов по стадиям жизненного цикла производства для разных типов энергетики кардинально различается (рис. 1, табл. 1).

В случае с ветряной, солнечной, геотермальной и гидроэнергетикой основная экологическая нагрузка приходится на стадию производства материалов, оборудования и строительства станций. Сходная структура и у атомной энергетики. У энергетики, работающей на ископаемом топливе, основная часть эмиссии приходится на период работы станции, для которой необходимо сжигание топлива. То же верно и для биоэнергетики. Таким образом, здесь мы тоже можем провести аналогию со структурой затрат - в первом случае «экологические затраты» относятся, скорее, к категории постоянных, во втором - к категории переменных. В первом случае преимущества сильнее проявляются на более длительных интервалах времени. Во втором случае сократить разрыв в «углеродно-эмиссионной ёмкости производства» можно за счёт технологий, позволяющих сокращать расход топлива и систем улавливания парниковых газов. В данном случае, при сравнении «эмиссионной ёмкости» ветряных и угольных электростанций допускается временной интервал 20 лет и КИУМ ветростанций составляет 30-40 %.

Основное внимание с позиций анализа жизненного цикла и встречных эффектов уделено биоэнергетике (выращиванию энергокультур для производства биотоплива), солнечной фотовольтаической энергетике, некоторым аспектам водородной энергетики и использованию электромобилей

Следует учитывать, что выше приведены грубые усреднённые (медианные) значения, здесь не может быть большой точности. Очень много зависит от технологии и конкретных условий производства. Данные различных исследований и разных источников могут кардинально расходиться. В частности, для ветроэнергетики разброс может составлять от 2 до 80 гСО2экв/кВт·ч (onlinelibrary.wiley.com).

Для ГЭС показатель гСО2экв/кВт·ч может достигать 180. А «нижние» значения для электростанций на ископаемом топливе - 200-300 гСО2экв/кВт·ч.

Причины, по которым эмиссия парниковых газов может достигать высоких значений для жизненных циклов гидроэлектростанций, солнечных, биоэнергетических и геотермальных станций, различны. В случае с ГЭС это, прежде всего, формирование водохранилища при плотине, в котором может формироваться застойный режим с микро био логическим разложением органического материала в приплотинной зоне, что вызывает рост эмиссии СО2 и СН4 (метана). Сходные процессы возможны и в зонах приливных электростанций. В солнечной фотовольтаической энергетике основные проблемы связаны с процессом производства солнечных батарей, ведь среди прочих рисков для среды и здоровья он приводит к эмиссии ряда соединений фтора - гексафторэтана C2F6, трёхфтористого азота NF3, гексафторида серы SF6, являющихся мощными парниковыми газами. В случае с геотермальной энергетикой многое зависит от состава энергоносителя - термальной воды, отличающейся высокой температурой и минерализацией со сложным химическим составом. В процессе её использования и утилизации возможно как непосредственное тепловое загрязнение среды, так и выделение в почву, воду и атмосферу ряда химических соединений, включая парниковые газы.

Эмиссия парниковых газов при использовании биоэнергии происходит на всех стадиях. Прежде всего, она происходит на стадии выращивания энергетических культур, в частности, рапса и масличной пальмы. Интенсивная культивация рапса требует большого количества азотных удобрений, что ведёт к росту эмиссии мощного парникового газа - двуокиси азота N20, являющейся, кроме того, разрушителем озонового слоя.

В среднем, как видно, несмотря на ребаунд-эффект, эмиссия парниковых газов в жизненном цикле возобновляемых источников энергии остаётся существенно ниже по сравнению с невозобновляемыми энергетическими ресурсами (за исключением атомной энергетики)

Большие плантации масличной пальмы были созданы в Юго-Восточной Азии (Индонезии, Малайзии, Таиланде) на торфяно-болотных землях, являющихся естественными «ловушками» и «кладовыми» углерода, и на месте тропических и экваториальных дождевых лесов, выполняющих роль «лёгких планеты». Это вызвало быстрое разрушение почвенного покрова, нарушение естественного режима поглощения углерода и, соответственно, рост поступления парниковых газов (СО2 и СН4) в атмосферу. При худших сценариях масштабный переход от ископаемого к биотопливу может не уменьшить, а даже увеличить эмиссию парниковых газов на величину до 15 %.

Другой, пока практически неизученный аспект - возможное снижение общего альбедо (отражающей способности) Земли при масштабном распространении энергетических культур, что теоретически может стать фактором потепления климата.

На стадии эксплуатации - сжигания биотоплива (на транспорте и энергетических станциях), обычно производимого в смеси с ископаемым топливом, также образуются, как выясняется, новые химические соединения, несущие как токсическую, так и парниковую опасность. Рост эмиссии парниковых газов как следствие действий по её сокращению - один из примеров ребаунд-эффекта.

В среднем, как видно, несмотря на этот эффект, эмиссия парниковых газов в жизненном цикле возобновляемых источников энергии остаётся существенно ниже по сравнению с невозобновляемыми энергетическими ресурсами (за исключением атомной энергетики).

В то же время, это далеко не во всех случаях так, и каждый конкретный проект или программа развития энергетики на возобновляемых источниках требует тщательного анализа, в том числе с экологических позиций - всегда заведомо «более зелёными» по сравнению с другими вариантами их считать нельзя.

Другие побочные эффекты

Помимо эмиссии парниковых газов в качестве встречного эффекта, энергетика на ВИЭ имеет и другие побочные экологические последствия. ГЭС и приливные электростанции меняют режимы течений и температур рек и морских заливов, становятся барьерами на путях миграции рыб и других потоков вещества и энергии. Кроме того, один из существенных побочных эффектов ГЭС - затопление территорий, пригодных для расселения, сельскохозяйственной и другой деятельности.

При этом на берегах водохранилищ при ГЭС могут развиваться оползневые процессы, возможны изменения местных климатических условий и развитие сейсмических явлений. Застойный водный режим в водохранилищах способен провоцировать не только рост эмиссии парниковых газов, но и накопление вредных веществ, представляющих угрозу в том числе для здоровья человека.

Отдельную опасность могут представлять прорывы и обрушения плотин ГЭС - особенно в горных и сейсмоопасных районах. Одна из крупнейших катастроф такого рода произошла в 1963-м году на реке Вайонт (Vajont) в итальянских Альпах, где в водохранилище при плотине ГЭС сошёл гигантский оползень, вызвавший перелив волны через плотину и образование «цунами» высотой до 90 м. Огромной волной было снесено несколько населённых пунктов, погибло более 2000 человек.

Геотермальная энергетика несёт риски химического загрязнения воды и почвы - термальные флюиды, помимо углекислого газа, содержат сульфид серы H2S, аммиак NH3, метан CH4, поваренную соль NaCl, бор B, мышьяк As, ртуть Hg. Возникает проблема утилизации опасных отходов. Кроме того, возможны коррозионные разрушения конструкций самих термальных станций, а выкачивание термальной воды может вызывать деформации слоёв горных пород и локальные сейсмические явления, сходные с теми, что возникают при любом горнодобывающем производстве или заборе межпластовых грунтовых вод.

Биоэнергетика связана с отчуждением сельскохозяйственных земель (и других ресурсов) для выращивания энергетических культур, что при масштабном переходе к использованию биоэнергии может обострить продовольственную проблему в мире.

Самый грубый расчёт показывает, что выращивание рапса или подсолнечника в качестве сырья для биотоплива может дать в итоге около тонны биотоплива с 1 га обрабатываемой земли. Общий объём потребления энергии в мире достигает 20 млрд тонн в год в нефтяном эквиваленте. Замещение этого объёма биотопливом всего на 10 %, или на 2 млрд тонн, потребовал бы отчуждения порядка 2 млрд га земли, то есть около 40 % всех сельскохозяйственных угодий мира или 15 % всей площади земной суши, исключая Антарктиду. Масштабное распространение энергетических монокультур снижает биоразнообразие, как прямо, так и косвенно, через ухудшение условий обитания многих видов флоры и фауны.

На стадии сжигания биологического топлива, в частности, на транспорте, при его смешивании с ископаемым топливом (обычным дизелем или бензином) и использовании добавок, позволяющих лучше работать в зимних условиях, идёт образование новых химических соединений, токсичных и канцерогенных по своим свойствам. Это показали, в частности, наблюдения и эксперименты в рамках исследования «Влияние биокомпонентного состава топлива на эмиссию дизельных двигателей и ухудшение дизельного масла» (Influence of biocomponents content in fuel on emissions from diesel engines and engine oil deterioration).

В этой связи сравнительно предпочтительной выглядит водорослевая энергетика - получение энергетического сырья из водорослей. Среди известных культур - такие как Botryococcus bran-nil и Arthrospira (Spirulina) platensis. Водоросли, по сравнению с «сухопутными» энергокультурами, отличаются более высокой (в определённых условиях - на порядок выше) продуктивностью на единицу площади в единицу времени и более высоким содержанием жиров (липидов) - исходного сырья для производства биотоплива. Кроме того, выращивание водорослей не связано с отчуждением продуктивных сельскохозяйственных земель, созданием сложных конструкций и оборудования, использованием большого объёма удобрений. При этом водоросли - один из мощных поглотителей углекислого газа и продуцентов кислорода. В связи с этим, это направление возобновляемой энергетики, пока недостаточно разработанное, можно считать весьма перспективным и с производственных, и с экологических позиций.

Ветроэнергетика - наименее опасная с точки зрения эмиссии парниковых газов и загрязняющих веществ, вызывает в то же время ряд претензий экологов по другим позициям. Они включают шумовое загрязнение местности, «эстетическое загрязнение», риск воздействия вращающихся лопастей на психику. Другая группа претензий связана с воздействием на фауну - в частности, ветряки могут отпугивать птиц и вызывать их гибель при столкновении с лопастями.

Проблема, также нарастающая со временем, особенно по мере строительства офшорных (морских) ветростанций - проблемы с доступностью для сервисных и аварийных служб, затруднения в обслуживании, устранении поломок и аварийных ситуаций, в частности, при возгорании ветрогенераторов

Накопленный опыт эксплуатации ветрогенераторов, насчитывающий в Западной Европе уже около 20 лет, показывает, что эти претензии носят скорее умозрительный характер - во всяком случае, при данной плотности ветрогенераторов и соблюдении определённых мер безопасности, в частности, размещение ветрогенераторов на расстоянии не менее нескольких сотен метров от жилых кварталов. Более реальными выглядят другие проблемы. Одна из них очевидна - ветроэлектростанции требуют больших площадей, и существуют некие пределы их установки на территориях с высокой плотностью населения и инфраструктуры. Другая проблема, становящаяся со временем всё более насущной - утилизация отработавших свой ресурс лопастей ветротурбин, построенных из композитных материалов и несущих высокий потенциал загрязнения среды.

Следующая проблема, также нарастающая со временем, особенно по мере строительства офшорных (морских) ветростанций - проблемы с доступностью для сервисных и аварийных служб, затруднения в обслуживании, устранении поломок и аварийных ситуаций, в частности, при возгорании ветрогенераторов.

Все перечисленные выше проблемы могут усилиться, создавая мультипликативный эффект, при более широком распространении ветроэнергетики. В настоящее время на неё приходится около 9 % общего объёма производства электроэнергии в Германии, около 5 % в Италии, 18 % - в Испании. В других крупных странах-производителях электроэнергии это существенно меньшая доля, в среднем же в мире она составляет около 2,5 %. К каким эффектам может привести наращивание ветроэнергетических мощностей в два-три раза и более - отдельный вопрос для изучения.

В солнечной энергетике основные экологические риски связаны с использованием большого количества токсичных и взрывных компонентов при изготовлении солнечных батарей. В частности, солнечные батареи содержат теллурид кадмия CdTe, сульфид кадмия CdS, арсенид галлия GaAs, а в процессе производства используется фтор, создающий ряд токсичных соединений. Это создаёт проблемы сначала на стадии производства, а затем на стадии утилизации батарей, отработавших свой ресурс. Эта проблема также неизбежно будет нарастать со временем. Другая проблема производства солнечных батарей - большие объёмы потребления воды. По американским данным, потребление воды высокой степени очистки для производства 1 МВт мощностей - около 10 л/мин.

Интегральный показатель, применяемый для оценки вреда того или иного вида деятельности для общества и среды, - это внешние, или экстернальные издержки (external costs), не включённые в цену продукта издержки, которые несёт общество в целом, то есть причинённый социально-экономический и социально-природный ущерб. Внешние издержки включают в себя вред для здоровья людей, коррозию и другие повреждения, наносимые материалам и конструкциям, снижение урожаев и др.

В оценке внешних издержек многое зависит от исходных допущений, они могут резко различаться по странам. В частности, для стран ЕС диапазон внешних издержек производства электроэнергии (евроцентов за кВт·ч) для различных источников энергии составляют (по данным ec.europa.eu): уголь - 2-15; нефть - 3-11; газ - 1-4; атомная энергия - 0,2-0,7; биомасса - 0-5; гидроэнергия - 0-1; солнечная (фотовольтаическая) энергия - 0,6; ветер - 0-0,25.

Для Германии (крупнейшего производителя электроэнергии в Европе с широким развитием энергетики на основе возобновляемых источников энергии) внешние маржинальные (переменные) издержки производства электроэнергии различными источниками оцениваются в следующие величины (евроцентов за кВт·ч): уголь - 0,75; газ - 0,35; атомная энергия - 0,17; солнечная - 0,46; ветряная - 0,08; гидроэнергия - 0,05.

Здесь мы также видим, что энергетика на ВИЭ несёт в среднем заметно меньшие издержки для общества, чем получение энергии из ископаемого сырья.

В то же время, атомная энергетика обнаруживает не менее высокую экологическую конкурентоспособность, несмотря на то, что в связи с известными катастрофами на АЭС в Чернобыле и Фукусиме её репутация в глазах общества заметно подорвана.

Развитие энергетики на ВИЭ требует дополнительного использования невозобновляемых ресурсов: сырья для удобрений в случае с биоэнергетикой, металла для оборудования и строительных конструкций, ископаемого природного газа для производства водородного топлива, энергии из ископаемых источников для работы данных производств

Дополнительные сложности и проблемы связаны с тем, что стадии жизненного цикла могут быть распределены по разным странам. В частности, начальные стадии, на которые приходится основная часть внешних издержек, такие, как выращивание энергетических культур или производство солнечных батарей, чаще проходят за пределами Европы и Северной Америке. Так, на данный момент почти 60 % всех солнечных батарей в мире производится в Китае.

Операционная стадия, на которую в случае с ВИЭ приходится минимальная доля издержек, связана с западными странами - потребителями «зелёной» энергии, а издержки завершающей стадии - утилизации, также могут выноситься в другие регионы.

Иными словами, в случае с энергетикой на основе ВИЭ также возможны ситуации, когда основные выгоды получают одни группы, а издержки ложатся на других. Распределение выгод и издержек - также важный вопрос, имеющий уже социальное измерение.

Фундаментальная же проблема состоит в том, что развитие энергетики на ВИЭ требует дополнительного использования невозобновляемых ресурсов: сырья для удобрений в случае с биоэнергетикой, металла для оборудования и строительных конструкций, ископаемого природного газа для производства водородного топлива, энергии из ископаемых источников для работы данных производств. Соответственно, наращивание производства энергии за счёт ВИЭ будет требовать и роста потребления невозобновляемых ресурсов. Положение вещей, при котором можно будет говорить о безусловном успехе и состоятельности возобновляемой энергетики - создание полных производственных циклов, где производство возобновляемой энергии обеспечивается из возобновляемых же источников. опубликовано

Возобновляемые источники энергии

В понятие возобновляемые источники энергии (ВИЭ) включаются следующие формы энергии: солнечная, геотермальная, ветровая, энергия морских волн, течений, приливов и океана, энергия биомассы, гидроэнергия, низкопотенциальная тепловая энергия и другие "новые" виды возобновляемой энергии.

Принято условно разделять ВИЭ на две группы:

Традиционные : гидравлическая энергия, преобразуемая в используемый вид энергии ГЭС мощностью более 30 МВт; энергия биомассы, используемая для получения тепла традиционными способами сжигания (дрова, торф и некоторые другие виды печного топлива); геотермальная энергия.
Нетрадиционные : солнечная, ветровая, энергия морских волн, течений, приливов и океана, гидравлическая энергия, преобразуемая в используемый вид энергии малыми и микроГЭС, энергия биомассы, не используемая для получения тепла традиционными методами, низкопотенциальная тепловая энергия и другие "новые" виды возобновляемой энергии.
Перспективы возобновляемой энергетики

В последние годы тенденция роста использования возобновляемых источников энергии (ВИЭ) становится достаточно явной. Проблемы развития ВИЭ обсуждаются на самом высоком уровне. Так на встрече на высшем уровне на Окинаве (июнь 2000) главы восьми государств, в том числе Президент России В. В. Путин, обсудили глобальные проблемы развития мирового сообщества и среди них проблему роли и места возобновляемых источников энергии. Было принято решение образовать рабочую группу для выработки рекомендаций по значительному развертыванию рынков возобновляемой энергетики. Практически во всех развитых странах формируются и реализуются программы развития ВИЭ.
Чем же вызван такой интерес к этой проблеме?

Говоря об этой тенденции, следует выделить один принципиально новый момент. До последнего времени в развитии энергетики прослеживалась четкая закономерность: развитие получали те направления энергетики, которые обеспечивали достаточно быстрый прямой экономический эффект. Связанные с этими направлениями социальные и экологические последствия рассматривались лишь как сопутствующие, и их роль в принятии решений была незначительной.

При таком подходе ВИЭ рассматривались лишь как энергоресурсы будущего, когда будут исчерпаны традиционные источники энергии или когда их добыча станет чрезвычайно дорогой и трудоемкой. Так как это будущее представлялось достаточно отдаленным (да и сейчас говорить серьезно об истощении потенциала традиционных энергоресурсов можно лишь с большой натяжкой), то использование ВИЭ представлялось достаточно интересной, но в современных условиях скорее экзотической, чем практической, задачей.

Ситуацию резко изменило осознание человечеством экологических пределов роста. Быстрый экспоненциальный рост негативных антропогенных воздействий на окружающую среду ведет к существенному ухудшению среды обитания человека. Поддержание этой среды в нормальном состоянии и возможность ее к самосохранению, становится одной из приоритетных целей жизнедеятельности общества. В этих условиях прежние, только узко экономические оценки различных направлений техники, технологии, хозяйствования, становятся явно недостаточными, ибо они не учитывают социальные и экологические аспекты.

Импульсом для интенсивного развития ВИЭ впервые стали не перспективные экономические выкладки, а общественный нажим, основанный на экологических требованиях. Мнение о том, что использование ВИЭ существенно улучшит экологическую обстановку в мире, - вот основа этого нажима.

Экономический потенциал возобновляемых источников энергии в мире в настоящее время оценивается в 20 млрд. т.у.т. в год, что в два раза превышает объем годовой добычи всех видов ископаемого топлива. И это обстоятельство указывает путь развития энергетики ближайшего будущего.

Основное преимущество возобновляемых источников энергии - неисчерпаемость и экологическая чистота. Их использование не изменяет энергетический баланс планеты. Эти качества и послужили причиной бурного развития возобновляемой энергетики за рубежом и весьма оптимистических прогнозов их развития в ближайшем десятилетии.

По оценке Американского общества инженеров-электриков, если в 1980 г. доля производимой электроэнергии на ВИЭ в мире составляла 1%, то к 2005 г. она достигнет 5%, к 2020 - 13% и к 2060 г. - 33%. По данным Министерства энергетики США, в этой стране к 2020 г. объем производства электроэнергии на базе ВИЭ может возрасти с 11 до 22%. В странах Европейского Союза планируется увеличение доли использования для производства тепловой и электрической энергии с 6% (1996) до 12% (2010). Исходная ситуация в странах ЕС различна. И если в Дании доля использования ВИЭ в 2000 г. достигла 10%, то Нидерланды планируют увеличить долю ВИЭ с 3% в 2000 г. до 10% в 2020 г. Основной результат в общей картине определяет Германия, в которой планируется увеличить долю ВИЭ с 5,9% в 2000 г. до 12% в 2010 г. в основном за счет энергии ветра, солнца и биомассы.

Можно выделить пять основных причин, обусловивших развитие ВИЭ:

· обеспечение энергетической безопасности;
· сохранение окружающей среды и обеспечение экологической безопасности;
· завоевание мировых рынков ВИЭ, особенно в развивающихся странах;
· сохранение запасов собственных энергоресурсов для будущих поколений;
· увеличение потребления сырья для неэнергетического использования топлива.

Масштабы роста использования ВИЭ в мире на ближайшие 10 лет представлены в табл. 1. Чтобы ощутить масштаб цифр, укажем, что электрическая мощность электростанций на возобновляемых источниках энергии (без крупных ГЭС) составит 380-390 ГВт, что превышает мощность всех электростанций России (215 ГВт) в 1,8 раза.

Таблица 1

Вид оборудования или технологии

2000 г.

2010 г.

Фотоэлектричество

0,938 (0,26)

Ветроустановки, подключенные к сети

Малые ГЭС

Электростанции на биомассе

Солнечные термодинамические станции

Геотермальные станции

380,9 - 392,45

Геотермальные тепловые станции и установки, ГВт

Солнечные коллекторы и системы,


На территории России сосредоточено 45% мировых запасов природного газа, 13% - нефти, 23% - угля, 14% - урана. Такие запасы топливно-энергетических ресурсов могут обеспечить потребности страны в тепловой и электрической энергии в течение сотен лет. Однако фактическое их использование обусловлено существенными трудностями и опасностями, не обеспечивает потребности многих регионов в энергии, связано с безвозвратными потерями топливно-энергетических ресурсов (до 50%), угрожает экологической катастрофой в местах добычи и производства топливно-энергетических ресурсов. Природа может не выдержать такого испытания. Около 22-25 млн. человек проживают в районах автономного энергоснабжения или ненадежного централизованного энергоснабжения, занимающих более 70% территории России.

Экономический потенциал ВИЭ на территории России, выраженный в тоннах условного топлива (т.у.т.), составляет по видам источников: энергия Солнца - 12,5 млн., энергия ветра - 10 млн., тепло Земли - 115 млн., энергия биомассы - 35 млн., энергия малых рек - 65 млн., энергия низкопотенциальных источников тепла - 31.5,млн., всего - 270 млн. т.у.т.

Эти источники по объему составляют примерно 30% от объема потребления топливно-энергетических ресурсов в России, составляющего 916 млн. т.у.т. в год, что создает благоприятные перспективы решения энергетических, социальных и экологических проблем в будущем.

Особенностью современного состояния научно-технических разработок и практического использования ВИЭ является пока еще более высокая стоимость получаемой энергии (тепловой и электрической) по сравнению с энергией, получаемой на крупных традиционных электростанциях. Но актуальность данного вопроса не исчезает. В России имеются обширные районы, где по экономическим, экологическим и социальным условиям целесообразно приоритетное развитие возобновляемой энергетики, в том числе нетрадиционной и малой. К ним относятся:

  • зоны децентрализованного энергоснабжения с низкой плотностью населения, в первую очередь, районы Крайнего Севера и приравненные к ним территории;
  • зоны централизованного энергоснабжения с большим дефицитом мощности и значительными материальными потерями из-за частых отключений потребителей энергии;
  • города и места массового отдыха и лечения населения со сложной экологической обстановкой, что обусловлено вредными выбросами в атмосферу от промышленных и городских котельных, работающих на ископаемом топливе;
  • зоны с проблемами обеспечения энергией индивидуального жилья, фермерских хозяйств, мест сезонной работы, садово-огородных участков.
По сути, широкое использование возобновляемых источников энергии соответствует высшим приоритетам и задачам энергетической стратегии России.

К примеру, во многом энергетическая безопасность формируется на региональном уровне. Степень обеспеченности регионов собственными топливно-энергетическими ресурсами является одним из основных показателей восприимчивости регионов к угрозам энергетической безопасности. Освоение и использование местных энергетических ресурсов (гидроэнергетика малых рек, торф, небольшие месторождения углеводородных топлив и др.), а также использование других, в первую очередь возобновляемых, энергетических ресурсов (солнечная, ветровая, геотермальная энергия, энергия биомассы) позволят многие регионы страны перевести на энергообеспечение за счет ВИЭ, обеспечив их энергетическую независимость.

В некоторых областях использования ВИЭ Россия имеет крупные научные результаты, соответствующие мировому уровню. Выявлены большие потенциальные возможности использования этих источников энергии в решении энергетических и экологических проблем уже в ближайшем будущем.

Возобновляемые источники энергии

Технологии, направленные на использование сил природы для выполнения работы, удовлетворяющей человеческие потребности, столь же стары, как и первое парусное судно. Имеется фундаментальная привлекательность в использовании таких природных сил, которые оберегают окружающую среду от эффектов горения органического топлива. Солнце, ветер, волны, реки, биомасса, потоки геотермальной теплоты земли действуют непрерывно и всегда (отсюда и термин «возобновляемый»). Из всего перечисленного пока только энергия падающей воды в реках получила широкое распространение для преобразования в электроэнергию. Основное применение солнечной энергии, благодаря фотосинтезу, человечество нашло в сельском хозяйстве и лесоводстве, хотя все чаще ее начинают использовать для отопления. Биомасса (например, остатки сахарного тростника) сжигается для получения энергии, увеличивается использование зерна для получения автомобильного топлива. Масштабы использования других видов природной энергии в настоящее время незначительны. Имеются и первостепенные задачи в сегодняшнем использовании возобновляемых источников энергии. Для фотоэлектрических систем, например, это вопрос - как сделать их самовозбуждающимися генераторами электричества. Для использования природной теплоты, - как преобразовать ее в пар или как применить другие способы преобразования энергии.

Если фундаментальное свойство возобновляемости источников энергии состоит в их доступности и относительно широкой распространенности, то фундаментальная проблема в их использовании для производства электроэнергии состоит в их нестабильности и недостаточной предсказуемости. Исключение составляет геотермальная энергия, которая не широко доступна. Это означает, что должны существовать либо дублирующие источники электроэнергии, либо способы ее накопления в больших масштабах. Однако, кроме накопления гидроэнергии в водохранилищах или сжатого воздуха в резервуарах (см. ниже), в настоящее время никакого другого способа не существует и не просматривается в будущем. Для автономных систем вопросы аккумулирования энергии являются первостепенными. При подключении их к существующим электросетям, возникает вопрос дублирующих источников. В использовании энергии солнца для крупномасштабного и особенно базисного производства электроэнергии имеются небольшие возможности.

Солнечная энергия: «Солнечный - не ядерный» - популярный лозунг представителей анти-ядерного движения в защиту окружающей среды и многих «технологических оптимистов», ратующих за прямое использование солнечного тепла, продолжает еще иногда звучать. Конечно, в будущем, возможно, мы будем видеть большее количество солнечных батарей на крышах домов, поскольку их цена снижается, а мы более рационально используем энергию, что способствует более широкому их распространению. Однако, для генерации электричества солнечная энергия имеет ограниченный потенциал, поскольку она непостоянна и непредсказуема. Во-первых, потоки солнечной энергии прерываются в ночное время и при облачной погоде. Это приводит к достаточно низкому коэффициенту использования солнечной энергии, обычно менее 15 процентов. Во-вторых, коэффициент преобразования современными фотоэлементами солнечной энергии в электрическую не превышает 12-16 процентов, и его до сих пор его не удается увеличить, хотя исследования в этой области ведутся уже более нескольких десятилетий. В Австралии в погожий солнечный день на поверхность земли, ориентированную перпендикулярно к солнечным лучам, попадает до одного килоВатта энергии на квадратный метр. В Канаде эта величина оказывается намного меньшей. На большей части ее территории, на горизонтальную поверхность площадью в один квадратный метр, попадает в среднем не более одного килоВатт часа солнечной энергии в течение дня. В настоящее время внимание сфокусировано на двух способах преобразования солнечной энергии в электрическую. Более всего известен метод, использующий фотоэлементы для генерации электричества. Этот метод имеет большое значение, например, для обеспечения энергией космических аппаратов, оборудования систем связи отдаленных узлов телесети в Австралии и Канаде. Популярность фотоэлементов была бы тем выше, чем выше была бы их эффективность и ниже стоимость (на сегодняшний день стоимость фотоэлементов составляет примерно 4000 долларов США на один килоВатт вырабатываемой мощности). Стоимость фотоэлементов все еще слишком высока для бытового использования. Для автономных систем должны обязательно использоваться некоторые способы хранения собранной энергии в течение темного времени суток или облачности. Это могут быть или аккумуляторные батареи, или водород, произведенный электролизом, или сверхпроводники. В любом случае, в дополнительные стадии превращения энергии необходимо вовлекать процессы с неизбежными энергетическими потерями, понижающие общий КПД, и значительно увеличивающие затраты. Несколько экспериментальных солнечных электростанций мощностью от 300 до 500 кВт включены в электросети Европы и США. В научных учреждениях продолжаются исследования в направлении уменьшения размеров фотоэлементов и увеличения их эффективности. Другое главное направление исследований - разработка экономных способов хранения энергии, которая выработана фотоэлементами в течение светового дня. Солнечная тепловая электростанция имеет систему зеркал для концентрации солнечного света на специальный поглотитель, в котором выделяющееся тепло преобразуется в пар высокого давления и приводит в движение турбины. Концентратор - это обычно параболический отражатель, который ориентируется между севером и югом, прослеживает путь солнца в течение дня. Поглотитель расположен в фокусе этого отражателя и использует солнечную энергию для нагревания специальной жидкости (обычно это синтетическое масло) до температуры порядка 400 градусов Цельсия. Эта жидкость далее управляет турбиной и генератором. В настоящее время несколько таких электростанций с мощностью энергоблоков 80 МВт находятся в эксплуатации. Каждый такой модуль занимает площадь примерно в 50 гектаров земли и требует очень точных систем управления. Солнечные электростанции дополняются модулями, работающими на газе, которые производят около четверти полной вырабатываемой мощности и сохраняют рабочий режим в течение ночи. В середине 1990-ых годов такие станции с суммарной мощностью более чем 350 МВт произвели во всем мире примерно 80 % электроэнергии, полученной от солнца. В будущем основная роль солнечной энергии будет состоять в ее прямом использовании для отопления. Наибольшая энергетическая потребность людей - это потребность в тепле, например, в горячем водоснабжении с температурой не более 60 градусов Цельсия. Более высокие температуры требуются в промышленности (в диапазоне 60 - 110 градусов Цельсия). Эти потребности в совокупности определяют пропорции энергетического потребления в индустриальных странах. Первая потребность же сего дня может быть удовлетворена в некоторых областях за счет использования солнечного света и тепла. Коммерческое использование солнечной энергии для снабжения теплом промышленных объектов, по-видимому, будет возможно в недалеком будущем. Практическая реализация такого подхода снизит в некоторой степени потребление электроэнергии, уменьшит расход органического топлива и благоприятно скажется на охране окружающей среды. А если использовать тепловые насосы с надлежащей изоляцией, то можно также отапливать (или охлаждать) здания с очень небольшими затратами энергии. В конечном счете, до десяти процентов полной потребляемой энергии в индустриальных странах может быть получено при рациональном использовании солнечного света и тепла. Это частично уменьшит необходимый уровень базисного производства электроэнергии.

Энергия ветра: В течении многих десятилетий в отдаленных районах используются ветряные турбины для бытовой генерации электричества и подзарядки аккумуляторных батарей. Генерирующие модули мощностью больше чем 1 МВт теперь функционируют во многих странах. Производимая ветряной турбиной мощность электроэнергии пропорциональна скорости ветра в третьей степени, и многие турбины эффективно работают при скорости ветра приблизительно 7 - 20 метров в секунду (или 25 - 70 км/час). На земном шаре не так много районов, имеющих такие преобладающие ветры. Подобно солнечной энергии, использование энергии ветра требует дополнительных дублирующих источников электроэнергии или систем аккумулирования энергии на случай более спокойной и безветренной погоды. В настоящее время ветряные турбины, работающие в различных частях мира, имеют общую мощность около 15000 МВт. Они являются ценным дополнением к крупномасштабным базисным электростанциям. Дания, например, получает 10 % своей электроэнергии от энергии ветра и, находясь в зависимости от импорта электроэнергии, намерена увеличивать эту долю. Наиболее экономичными и практичными являются ветряные коммерческие модули мощностью более одного МВт, которые могут группироваться в небольшие ветряные станции.

Реки: Гидроэлектроэнергия, которая является преобразованной потенциальной энергией воды в реках, в настоящее время составляет 19% всей мировой электроэнергии (в Австралии 10%, в Канаде 59 %). Кроме нескольких стран, гидроэлектроэнергия обычно применяется для компенсации пиковых нагрузок, потому что, во-первых, она может быть оперативно подключена к действующим электросетям, а во-вторых, запасы воды ограничены. В любом случае гидроэлектроэнергия не имеет перспектив для использования в будущем, так как большинство географических районов в мире, имеющих возможности для использования потенциальной энергии воды, или уже находятся в эксплуатации или же недоступны по другим причинам (из соображений охраны окружающей среды, например). Преимущество многих гидросистем состоит в их способности компенсировать сезонные (также как и ежедневные) максимальные нагрузки в потреблении электроэнергии. На практике использование запасов воды иногда усложняется запросами на ирригацию, которые могут происходить одновременно с пиковыми нагрузками. В некоторых областях географические условия могут ограничивать использование гидроэлектроэнергии в периоды сезонных дождей. Геотермальное тепло: В тех районах, где горячий подземный пар может достигать поверхности земли, его можно использовать для производства электроэнергии. Такого рода геотермальные источники энергии получили распространение в некоторых частях мира, например, в Новой Зеландии, в США, на Филиппинах, в Исландии и Италии. В общей сложности эти источники энергии сегодня вырабатывают до 6000 МВт мощности. Имеются также перспективы в использовании этого метода в других районах путем перекачивания горячей подземной воды в те места, где ее нет.

Приливы: Впервые использование приливной энергии в заливах или устьях рек было осуществлено во Франции и в России (начиная с 1966 года). Приливно-отливная вода, движущаяся в обеих направлениях, используется для вращения турбин. Этот вид энергии может использоваться там, где есть значительные области с приливно-отливными потоками. В Канаде, например, это залив Фанди между Новой Скоцией и Новым Брансуиком. Во всем мире эта технология имеет незначительный потенциал.

Волны: Использование энергии движения волн может дать гораздо больший эффект, чем приливно-отливная энергия. Возможности практического использования энергии волн в свое время исследовалась в Великобритании. Генераторы электроэнергии в этом случае должны располагаться на плавающих платформах или в полостях прибрежных скальных пород. Высокая стоимость требуемых устройств и многочисленные практические проблемы делают такие проекты не реальными.

Биомасса: Понятие «биомасса» относят к веществам растительного или животного происхождения, а также отходам, получаемым в результате их переработки. В энергетических целях энергию биомассы используют двояко: путем непосредственного сжигания или путем переработки в топливо (спирт или биогаз). Есть два основных направления получения топлива из биомассы: с помощью термохимических процессов или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического вещества. В середине 80-х годов в разных странах действовали промышленные установки по производству топлива из биомассы. Наиболее широкое распространение получило производство спирта. Одно из наиболее перспективных направлений энергетического использования биомассы – производство из неё биогаза, состоящего на 50-80% из метана и на 20-50% из углекислоты. Его теплотворная способность – 5-6 тыс. ккал/м3. Наиболее эффективно производство биогаза из навоза. Из одной тонны его можно получить 10-12 куб. м метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как солома злаковых культур, может дать около 20 млрд. куб. м метана. В хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника, из которых можно получить до 2 млрд. куб. м метана. Для тех же целей возможна утилизация ботвы культурных растений, трав и др. Биогаз можно конвертировать в тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтезгаза и искусственного бензина. Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую, агрохимическую (получение удобрений типа нитрофоски) и экологическую. Установки по производству биогаза размещают, как правило, в районе крупных городов, центров переработки сельскохозяйственного сырья.

Отношение возобновляемых источников энергии к базисному потреблению электроэнергии: Солнце, энергия ветра, приливы и волны не могут заменить использование угля, газа или ядерной энергии, однако они исключительно важны для использования в специфических районах земного шара. По указанным выше причинам перечисленные источники энергии не могут обеспечить базисные потребности в электроэнергии или компенсировать пиковые нагрузки, когда это необходимо. Практически они могут дать лишь 10 - 20% от общей потребности в энергии и никогда не заменят уголь, газ или ядерную энергию. Однако, они могут стать исключительно важными в специфических районах земного шара, где для их использования существуют благоприятные условия. Проблемы воздействия на окружающую среду сотен огромных ветряных турбин, занятые и неиспользуемые обширные территории земли или огромные приливно- отливные заграждения, не говоря уже о новых гидроузлах, являются существенным ограничением в использовании возобновляемых источников энергии. Конечно, такие технологии в некоторой степени внесут свой вклад в будущую мировую энергетику, хотя и не будут нести основной нагрузки на удовлетворение энергетических нужд планеты. Если человечество найдет в будущем способы эффективного хранения электроэнергии, получаемой от солнечных батарей или ветряных генераторов, вклад этих технологий в удовлетворение базисных энергетических потребностей станет намного значительней. В некоторых местах в течение времени непиковых нагрузок и выходных дней избыточная энергия угольных или ядерных электростанций используется для накопления воды в водохранилищах, которая затем расходуется гидроэлектростанциями для компенсации пиковых нагрузок. К сожалению, не так много мест имеют возможности для строительства подкачиваемых плотин такого рода. Хранение сжатого воздуха в подземных хранилищах используется пока в гораздо меньшей степени. Способы ранения больших количеств электроэнергии в гигантских аккумуляторных батареях пока не разработаны. При рассмотрении энергоснабжения в целом, имеются некоторые возможности для реверсирования (переключения) энергопотоков в развитых странах с их 24-часовыми и 7-дневными циклами для того чтобы удовлетворить ежедневные пиковые нагрузки. Сегодняшнее оборудование для компенсации пиковых нагрузок могло бы использоваться в некоторой степени для снабжения энергией систем, полагающихся в основном на возобновляемые источники энергии. Эти мощности позволили бы дополнить крупномасштабное производство энергии солнечными батареями и ветряными турбинами в моменты, когда они не в состоянии этого делать. Любое реальное использование солнечных батарей или энергии ветра для производства электроэнергии в энергосети должно предусматривать наличие 100%-ной дублирующей генерирующей мощности - гидро или тепловой электростанции. Понятно, что это связано с очень высокими экономическими затратами, хотя в некоторых местах может стать основой развития будущей энергетики. Для развивающихся стран с незначительными базисными потребностями в электроэнергии такой подход, естественно, неприменим.

Экологические аспекты использования возобновляемых источников энергии: Возобновляемые источники энергии имеют различный набор качеств с точки зрения их влияния на окружающую среду и выгоды по сравнению с органическим или ядерным топливом. К положительным качествам следует отнести тот факт, что они совершенно не выбрасывают в атмосферу углекислый газ, и не производят других загрязняющих веществ (кроме некоторых продуктов распада, образующихся на дне водных резервуаров). Но так как они используют относительно малоинтенсивную энергию, площадь, занимаемая ими, оказывается намного большей. Кроме того, физические размеры оборудования, по этой же причине, оказываются очень большими по сравнению с существующими высокоинтенсивными источниками энергии. Последнее обстоятельство требует для изготовления соответствующих конструкций больших материальных и энергетических затрат. Сомнительно, например, что бы жители Австралии одобрили воздействие на окружающую среду новых гидросистем в районе Снежных Гор (дающих, кстати, 3.5 % всей электроэнергии и обеспечиваютирригацию). Вряд ли будут одобрены и проекты по застройке больших площадей вблизи городов под электростанции на солнечных батареях, если такие проекты вообще когда-либо будут сделаны. В Европе, ветряные турбины давно не вызывают к себе любовь из-за производимого ими шума и по соображениям охраны природы. Громадные вращающиеся турбины постоянно приводят к гибели большого числа птиц. Однако, воздействие на окружающую среду может быть минимизировано в некоторых случаях. Солнечные батареи, например, могут устанавливаться вдоль автомагистралей, выполняя дополнительную функцию шумоизоляции, или располагаться на крышах домов. Имеются также отдельные места, где возможна и безопасная становка ветряных турбин.


Список используемой литературы.

1. Энергетические ресурсы мира. Под редакцией Непорожнего П.С., Попкова В.И. - М.: Энергоатомиздат. 1995 г.

2. Огородников И.А., Огородников А.А. «На пути к устойчивому развитию: экодом. Сборник материалов» М.: Социально-экологический союз, 1998г.

3. Журнал «Техника молодежи» №5, 1990г.

4. Лаврус В.С. «Источники энергии» К.: НиТ 1997г.

5. Ресурсы Интернета.

Которые говорят о том, что мировая экономика в 2014 году выросла на 3 %, при этом произошло еще одно событие, значение которого крайне велико. Речь идет об эпохальном сдвиге. Дело в том, что впервые рост мировой экономики не сопровождался ростом выбросов углекислого газа. Отчет был представлен организацией «Сеть по политике возобновляемой энергии для XXI века», которая работает под эгидой ООН.

«Виной» этому послужили активнейшие действия Китая по разработке и переходу на возобновляемые источники энергии. В 2014 году Поднебесная ввела в строй столько гидроэлектростанций, «ветряков» и станций по использованию энергии солнца, сколько ни одна страна мира. Еще одна важная веха развития Китая в прошлом году заключалась в том, что впервые за долгое время в этой стране было снижено потребление угля.

А что же Россия?

Небезосновательно считается, что запасы невозобновляемых источников энергии, в первую очередь нефти и газа, у нашей страны довольно велики. В своем докладе на прошедшем в 2013 году в Москве Первом международном форуме «Возобновляемая энергетика» академик Фортов и доктор технических наук Попель говорят об этом :

«Россия, безусловно, лучше, чем любая другая страна в мире, в целом обеспечена собственными запасами традиционных топливно-энергетических ресурсов».

Действительно, большинство российских граждан прекрасно осведомлены о том, что наша страна занимает первые места по экспорту нефти и газа. В связи с этим развитие возобновляемых источников энергии даже может показаться блажью. Однако это не так. Почему? Среди рассуждений Фортова и Попеля можно выделить несколько основных аргументов, основанных на реальном положении дел:

1. Как это не покажется странным, многие регионы страны испытывают дефицит энергии. Это касается в том числе и Субъектов Федерации, расположенных на юге. Они нуждаются в поставках энергии, а также в завозе топлива.

Ученые говорят о том, что «для них столь же актуально решение проблемы региональной энергетической безопасности, как и для стран импортеров энергоресурсов».

2. Использование газа как источника энергии - гораздо более экологичная технология, чем сжигание угля или нефтепродуктов.

Однако по данным ученых по состоянию на 2013 год, в России было газифицировано около 50 % городских и 35 % сельских населенных пунктов. «Газпром» на своем сайте приводит показатели так называемого среднего уровня газификации на начало 2013 года: в городах - 70,1%, в сельской местности - 53,1% . В любом случае ясно одно - ситуация с газификацией России далека от идеальной. Естественно, люди, живущие в местности без газа вынуждены использовать уголь и нефтепродукты, являющиеся источником локального загрязнения.

3. Природные катаклизмы высветили, что и в районах централизованного энергоснабжения необходимо развитие малой распределительной генерации.

Благодаря ей можно повысить надежность энергоснабжения потребителей в небольших населенных пунктах, которые питаются электричеством через ЛЭП, а снабжаются теплом с помощью местных котельных.

4. ВИЭ дает отличный «подсобный» эффект: развивается бизнес, появляются новые рабочие места, рождаются новые инновационные технологии и производства.

5. У России большие запасы нефти и газа, но небезграничные.

Рано или поздно, придется думать об иных источниках энергии. Однако энергетика - очень инертная сфера: чтобы что-то серьезно изменить в ней или перестроить через годы, нужно начинать уже сейчас.

Итак, в научной среде есть серьезные силы, которые аргументированно поддерживают развитие в нашей стране возобновляемых источников энергии. А что происходит на уровне государства? На словах Министерство энергетики очень даже «за» :

«До недавнего времени по целому ряду причин, прежде всего из-за огромных запасов традиционного энергетического сырья, вопросам развития использования возобновляемых источников энергии в энергетической политике России уделялось сравнительно мало внимания. В последние годы ситуация стала заметно меняться. Необходимость борьбы за лучшую экологию, новые возможности повышения качества жизни людей, участие в мировом развитии прогрессивных технологий, стремление повысить энергоэффективность экономического развития, логика международного сотрудничества – эти и другие соображения способствовали активизации национальных усилий по созданию более зеленой энергетики, движению к низкоуглеродной экономике».

А что на деле? В реальности в России есть возобновляемая энергетика. К сожалению, некоторые граждане восторгаются зарубежными солнечными электростанциями и при этом не знают, что у нас они тоже есть, и не только они .

К примеру, в России действует относительно немало объектов малой гидроэнергетики: в Московской области, Карелии, на Кавказе, неподалеку от Уфы и Оренбурга. Энергия ветра используется в ряде кавказских регионов и близ Санкт-Петербурга, а также на севере европейской и азиатской частей страны. Ветряная электростанция построена, например, в Тикси - это крайне удаленное от привычной «цивилизации» место. Россия использует энергию волн Баренцева моря и развивает геотермальные станции на Курильских островах, Сахалине и, опять же, на Кавказе. Как мы видим, кавказский регион - это место, где используются разнообразные возобновляемые источники энергии, здесь же "добывают" энергию солнца. Впрочем, развивать солнечную энергетику можно и в других частях нашей страны:

Существует и государственная политика в области возобновляемых источников энергии, а также планы по их строительству. Один из важнейших документов в данной сфере - государственная программа «Энергоэффективность и развитие энергетики», утвержденная правительственным постановлением . В программе есть интересующий нас раздел - подпрограмма «Развитие использования возобновляемых источников энергии».

С одной стороны, увеличение количества ВИЭ кажется довольно незначительным. Однако предстоит серьезная работа - ведь на данный момент доля ВИЭ в общем энергобалансе страны не превышает 1 % . В случае успешной реализации государственной программы будет создана довольно серьезная основа для дальнейшего развития ВИЭ в стране.

Самый главный вопрос - достаточные ли это темпы? Важно отметить, что доля ВИЭ в мире растет довольно бурно. В некоторых странах, особенно, в развитых, доля ВИЭ в общем энергопроизводстве довольно внушительна:

Существует опасность, что Россия просто-напросто отстанет в очень серьезной и жизненно важной сфере - в энергетике и через пару десятилетий окажется в плохом положении. С другой стороны, правильно ли вообще ориентироваться исключительно на «долю в общем энергобалансе»? Не лучше ли будет в нашей стране, прежде всего, учитывать энергообеспеченность? Кроме того, нужно понимать, что долю ВИЭ наращивают до таких высоких значений в основном страны-импортеры энергоносителей. Если в Германии долю возобновляемых источников энергии в среднесрочной перспективе собираются поднять до 30 %, то это не значит, что наша страна должна ставить перед собой такую же цель.

России, естественно, нужно развитие использования возобновляемых источников энергии. Однако при этом важно учитывать множество факторов: и реальные экономические возможности страны, и фактические потребности, и мировую ситуацию.

Массовое применение "ветряков" ущербно для фауны.
Фото Reuters

Потенциал альтернативных, возобновляемых источников энергии (ВИЭ) в Российской Федерации чрезвычайно велик. Экономический потенциал использования ВИЭ равен 270 млн. тонн условного топлива в год, что соответствует более 25% от годового энергопотребления. Однако вклад в энергобаланс России альтернативных источников энергии – геотермальных вод, приливных течений, ветра, солнца и т.д. – очень мал, масштабы и темпы их освоения у нас в стране отстают от зарубежных и не отвечают потребностям экономики.

Осуществляемая в настоящее время программа экономического и социального развития России на ближайшие годы не может быть выполнена без мощной энергетической базы, без опережающего развития энергетики и внедрения энергосберегающих технологий, одним из направлений которых является перестройка структуры топливно-энергетического баланса страны в направлении уменьшения доли ископаемого топлива – нефти, газового конденсата, газа, угля и других видов топлива за счет возрастания доли АЭС, ГЭС и активного использования ВИЭ. Кроме экономии органического топлива развитие нетрадиционной энергетики позволяет снизить объемы его перевозок и затраты на транспортировку.

Перестройке структуры энергетики в России в пользу ВИЭ способствует также наряду со многими другими причинами увеличение нефтепереработки до 75–80%, что в несколько раз снижает возможность использования мазутного топлива, в том числе для электростанций. Сложным становится и увеличение потребления газа электростанциями России, имея в виду, что газ – важный экспортный ресурс.

Перераспределение составляющих энергобалансов многих регионов и целых стран за счет роста использования ВИЭ является не только важнейшим направлением энергосберегающей политики, но играет значительную роль в стратегии предотвращения изменения климата, так как получение энергии и тепла с помощью ВИЭ сопровождается минимальными по сравнению с традиционными установками выбросами в атмосферу парниковых газов.

Наиболее остро вопрос о расширении использования ВИЭ стоит сейчас в России, потому что больше 70% ее территории с населением около 20 млн. человек находится в зоне децентрализованного электроснабжения (Крайний Север, Дальний Восток и др.). Не решаемая вовремя проблема завоза нефтепродуктов в северные и другие труднодоступные районы вызывает необходимость аварийной эвакуации населения из таких с трудом освоенных регионов. Но в этих регионах имеются большие ресурсы ВИЭ, в том числе энергия ветра, малых рек, солнца, тепла Земли. По разным оценкам, здесь может быть обеспечено с помощью ВИЭ от 25 до 50% энергопотребления. Это также способствует очистке северных территорий от скопления тары для топлива (бочек, контейнеров и т.д.).

Использование ВИЭ решает проблему снабжения электроэнергией большого числа мелких территориально разобщенных потребителей. Одновременно использование возобновляемых источников энергии позволяет учесть межотраслевые региональные интересы, включая экологию и конкретные планы экономического и социального развития отдельных территорий. Социальная роль ВИЭ заключается также в выравнивании обеспеченности энергией районов с разной плотностью населения, в том числе центральных сильно заселенных и труднодоступных малонаселенных территорий, что приводит к глубокой перестройке стиля энергопотребления и жизни.

В современных условиях, характеризующихся инвестиционным голодом, ВИЭ могут вводиться в эксплуатацию в виде небольших модулей, не требующих больших капиталовложений, а затем наращиваться по мере необходимости. Многие установки ВИЭ могут работать в автономном режиме и не требуют большого числа обслуживающего персонала.

Немаловажным обстоятельством, способствующим обращению к объектам ВИЭ, является отрицательное отношение в обществе к ГЭС, АЭС, ТЭС.

Наконец, чрезвычайно важное в современных условиях обстоятельство – ВИЭ обеспечивают децентрализованную от энергосистем форму электроснабжения. Поэтому наличие возобновляемых источников энергии способствует повышению безопасности снабжения населения электричеством и теплом в случае непредвиденного или преднамеренного отключения крупных энергосистем (теракты и т.д.).

Возможные экологические последствия

Анализ рядом исследователей эксплуатации ВИЭ в различных странах показал, что эти источники не всегда являются безупречными в экологическом отношении.

Еще в 1981 году в городе Найроби (Кения) состоялась Конференция ООН, на которой была принята «Мировая программа действий по использованию новых и возобновляемых источников энергии». Спустя 10 лет группа экспертов ООН проанализировала состояние дел в этой отрасли энергетики и, используя большое количество материалов по миру, дала оценку экологических последствий использования различных видов нетрадиционных источников энергии. Общее заключение экспертов свидетельствует о том, что существующее представление о ВИЭ как о полностью экологически чистых источниках ошибочно. Экспертиза показала необходимость анализа взаимодействий ВИЭ с окружающей средой еще на стадии проектирования. Это позволит не повторять ошибок, допущенных при проектировании и эксплуатации традиционных энергоустановок, когда сначала были разработаны и внедрены их технологии, а затем начались поиски путей снижения неблагоприятных воздействий на окружающую среду.

Эксперты ООН убедительно показали также необходимость исследования воздействия установок ВИЭ, связанного не только с выработкой энергии, но и с изготовлением оборудования, в том числе с добычей сырья для его создания. Именно на этом этапе во многих случаях могут проявиться наиболее существенные отрицательные экологические последствия ВИЭ.

Однако при оценке экологических преимуществ и недостатков ВИЭ необходимо учитывать мощность их установок, от которых зависит степень воздействия на окружающую среду. Максимальное неблагоприятное воздействие оказывают объекты большой мощности. Установки малой мощности практически безопасны в экологическом отношении, положительный эффект от их эксплуатации неизмеримо выше возможного экологического ущерба.

Покажем на примере наиболее используемых установок ВИЭ возникающие при их эксплуатации проблемы.

Ветроустановки

Использование энергии ветра (ВЭУ) недостаточно изучено в экологическом отношении. Давно установлено, что ВЭУ вызывают интенсивное акустическое излучение. Есть свидетельства о том, что ветроустановка мощностью 2 МВт в США (штат Северная Каролина) с лопастью пропеллера 60 м отключается ночью из-за сильного шума. Особую экологическую проблему представляют собой шумовые воздействия ветроустановок мощностью более 250 КВт, так как скорость на конце лопаток ветроколес большого диаметра у таких установок соизмерима со сверхзвуковой скоростью. При этом возникает инфразвук, отрицательно воздействующий на живые существа, в том числе и на человека. Замечено влияние работающих станций на прием теле- и радиопередач. Отмечаются помехи для воздушного сообщения, изменяются показания навигационных приборов. ВЭУ травмируют и отпугивают птиц, особенно на перелетных трассах, при создании комплекса ВЭУ ухудшаются условия существования мелких наземных животных, птиц, насекомых, а также морской фауны при размещении ветроэлектростанций (ВЭС) на акваториях.

При воздействии ВЭС, объединяющих большое количество ветроустановок, ослабевает сила воздушных потоков, что может привести к нарушению теплового баланса и сказаться на климате, а также отразиться на проветривании расположенных недалеко промышленных районов. И наконец, ветроустановки нуждаются в больших площадях и при этом могут оказать влияние на изменение свойств почвенного покрова.

Исследователи последствий создания ВЭУ не исключают также аварийных ситуаций – поломку агрегатов и отлет поврежденных деталей. У крупных ВЭУ лопасти могут быть отброшены на 400–800 м. В Дании на 2000 ВЭУ приходится 630 вынужденных остановок в квартал и 20 случаев разрушения отдельных элементов.

И наконец, нужно вспомнить о большом количестве металла для производства оборудования ВЭУ. Замена металлических конструкций стеклопластиковыми требует изучения экологических последствий химических технологий по производству стеклопластика.

Неравномерность выработки энергии ВЭУ можно компенсировать совмещением их с работой других энергообъектов, то есть сооружением ВЭУ в составе энергокомплексов. Так ВЭУ, работающие параллельно с гидростанциями и в комплексе с ними, могут снизить в определенное время выработку энергии от ГЭС и сработку уровней воды в водохранилище. Отрицательные последствия ВЭУ снижаются при расположении их на акваториях морей.

Солнечные электростанции (СЭС)

Наряду с большими преимуществами использования энергии солнца – ее бесплатностью, возобновимостью и огромными ресурсами – есть целый ряд технических, экологических и экономических факторов, затрудняющих ее широкое применение для выработки электроэнергии. Технические трудности – низкая плотность солнечной радиации у земной поверхности (в наиболее благоприятных районах 1 кВт/кв. м), нерегулируемый режим поступления к поверхности земли потока солнечного излучения в связи с вращением Земли и облачностью, очень низкий КПД преобразования солнечной энергии в тепловую и т.д. Все это требует, особенно для станций с термодинамическими системами, создания больших отражающих и поглощающих поверхностей, систем ориентирования аккумуляторов большой стоимости. Периодичность, зависимость от состояния атмосферы, неравномерность притока солнечной радиации в течение суток и года требует создания аккумулирующих или дублирующих систем. Большая стоимость панелей и всей оптической системы делает производство электроэнергии от солнечной радиации пока очень дорогим для крупных энергоустановок. Кроме того, СЭС занимают большие площади, они землеемки. Для получения с помощью СЭС энергии, равной энергии от ТЭС и ГЭС, принимающие устройства, особенно у крупных СЭС, должны покрыть значительные площади, что неизбежно приведет к снижению температуры поверхности почвы и воздуха, а при массовом строительстве СЭС может вызвать нарушение теплового баланса, изменить направление ветра, характер почв и растительности обширных регионов. Кроме того, изготовление гелиоэнергетического оборудования требует помимо кремния многие дорогостоящие материалы и электроэнергию, получение которых, в свою очередь, может быть связано с неблагоприятными воздействиями на окружающую среду.

Тепловой сброс в биосферу от СЭС в два раза превышает количество тепла от ТЭС на органическом топливе. В связи с этим рекомендуется новый тип СЭС, использующих эффект «соляных солнечных прудов» – эффект сильного нагрева нижних слоев воды в замкнутых водоемах, содержащих повышенные концентрации солей. Для этих целей может быть использовано множество естественных соляных озер на территории юга России.

Есть еще один экологический аспект – обратное влияние окружающей среды на гелиостаты – загрязнение их деталей пылью, химическими соединениями, осадками и т.д.

Однако в настоящее время целесообразно шире внедрять не только небольшие гелиоустановки в коммунальное хозяйство для получения тепла и энергии, но и усилить исследования в области большой гелиоэнергетики. Удорожание органического топлива наряду с удешевлением стоимости оптических устройств разрешение экологических проблем сделают сооружение СЭС в перспективе экономически оправданным. Есть, кроме того, разработки по сочетанию применения солнечной и других видов энергии, например, перспективность совместной работы СЭС и ГЭС, когда при работе солнечной установки гидростанция разгружается на соответствующую мощность и экономит воду в водохранилище. В итоге получается своеобразная солнечно-аккумулирующая электростанция (САЭС), похожая на гидроаккумулирующую станцию (ГАЭС).

Подведем итоги

1. Развитие ВИЭ способствует осуществлению стратегии устойчивого развития экономики и является важным условием обеспечения энергетической безопасности страны. Они повышают степень автономности систем жизнеобеспечения населения, что особенно важно для регионов, лишенных централизованного электроснабжения. Остро необходимы также исследования по использованию ВИЭ в экстремальных по климатическим условиям районах (для электроснабжения антарктических и северных полярных станций).

2. Изучение многих опубликованных и ведомственных материалов свидетельствует о том, что ВИЭ, без сомнения, имеют большие экологические преимущества перед выработкой электроэнергии на традиционных энергоустановках (ТЭС, АЭС, ГЭС). Однако имеющие место неблагоприятные экологические последствия их создания свидетельствуют о необходимости нахождения наиболее приемлемых технических решений и совершенствования прогнозов.

3. Осуществление крупной национальной программы развития нетрадиционной энергетики требует принятия федерального закона и сопутствующих ему нормативно-правовых подзаконных актов по ВИЭ, предусматривающих комплекс мер по финансированию этого направления энергетики и научно-техническому содействию со стороны государства.

4. Существующие законодательства в области экономики и энергетики поощряют развитие традиционных функционирующих в настоящее время систем и, по существу, не способствуют внедрению ВИЭ. Лоббирование в верхних эшелонах власти интересов монополий, разрабатывающих и использующих ископаемые и ядерные энергоносители, является серьезным препятствием внедрения ВИЭ. Сказываются также инертность ряда ведомств и привычка к устоявшимся способам добычи и использования энергии, в которые уже вложены громадные средства.

5. Нетрадиционные энергоустановки чрезвычайно науко-, материало- и капиталоемки. Большие затраты на сооружение и длительный инвестиционный цикл делают их, с одной стороны, непривлекательными для вложения капитала. В то же время ввиду модульного характера энергетических систем и возможности их поэтапного внедрения уменьшаются инвестиционные затраты и риски.

6. Наряду с общим законом о ВИЭ целесообразно принятие конкретного плана действий, основанного на изучении перспектив, возможностей и особенностей создания нетрадиционных энергоустановок в различных регионах России.

7. Совершенствованию государственной политики в области развития ВИЭ должны содействовать научно-исследовательские и проектные работы, создание высокотехнологичных проектов, обеспечивающих решение энергетических, экологических и социально-экономических задач.