Современная энергетика. Перспективы развития современной экологической энергетики

29.03.2012

Перспективы современной энергетики

Расшифровка выступления на конгрессе «Глобальное будущее 2045», 17 февраля 2012 года, Москва


Дмитрий Семенович Стребков, директор Всероссийского НИИ электрификации сельского хозяйства РАСХН:

«Мы предлагаем шесть стратегических проектов для будущего мира, которые позволят увеличить энергетическую безопасность и создать новое энергетическое снабжение Земли, не основанное на сжигании ископаемого топлива».

По данным Международного энергетического агентства, к 2035 году будет удвоение производства электрической энергии. Это удвоение будет достигнуто за счет дальнейшего развития использования нефти, природного газа, угля, ядерной энергии. И только небольшой вклад дадут возобновляемые источники энергии. Это касается также и первичной энергии. Очевидно, что наши международные энергетические власти планируют дальше сжигать уголь, нефть, газ и так далее.

Конечно, это приведет к тому, что на 21% увеличатся выбросы парниковых газов до 2035 года. То есть мы идем по тому сценарию, по которому идем, и ничего не планируется радикально изменять.

Но изменить можно уже сейчас. Появились новые энергетические технологии, которые могут изменить мир уже в этом столетии. Мы предлагаем шесть стратегических проектов для будущего мира, которые позволят увеличить энергетическую безопасность и создать новое энергетическое снабжение Земли, не основанное на сжигании ископаемого топлива. Что, кстати, приведет и к стабилизации обстановки в мире, потому что, по большому счету, все войны, которые сейчас прошли и которые планируются, идут из-за энергетических ресурсов, в первую очередь из-за нефти.

Первый проект - это бестопливное производство электрической и тепловой энергии. В прошлом году, было введено 60 ГВт таких электростанций, которые не используют ископаемое топливо и ядерную энергию. Надо еще немножко увеличить, например до 100 ГВт в год, в два раза, и мы уже начнем переходить к новому мировому устройству по части энергообеспечения.

Второй стратегический проект - это распределенное производство энергии. Это уже тоже делается. В Европейском союзе есть директива, что все здания, государственные и частные, должны иметь экологически чистые энергоустановки, использующие те самые бестопливные источники энергии. Я думаю, что это должно быть проектом для всей Земли. Не только в Европейском Союзе, но и в России, и во всем мире так должно быть.

Третий наш стратегический проект очень важен. Это солнечные энергосистемы с круглосуточным производством электрической энергии. Это возможность выбить последний камень из рук скептиков, которые говорят, что солнечная энергия - это что-то локальное, местное, не масштабное, потому что есть день и ночь, есть зима, есть облака. Оказывается, всего этого можно избежать и создать такие системы, где будет круглосуточное, круглогодичное в течение миллионов лет производство электроэнергии за счет энергии Солнца.

Четвертый проект связан с третьим, потому что для создания глобальной солнечной энергосистемы надо научиться передавать тераваттные потоки мощности. Это в свое время делал Никола Тесла. Мы развили эти технологии. И, по существу, можем сейчас предложить создание защищенных местных, региональных и глобальных энергосистем с заменой воздушных линий на кабельные подземные волноводные линии передач. По крайней мере, на первом этапе это даст возможность полностью исключить те объявления по телевизору, когда Краснодарский край без света, Италия без света, потому что прошел ураган, все провода порвались, ледяные дожди и так далее. Потому что ни одного столба на земле не останется. Все будет передаваться по подземным кабельным линиям.

Пятый стратегический проект касается транспорта. Предложены технологии (опять-таки развитие технологий Тесла), когда вы можете ехать из Москвы до Сочи без двигателя, без химических аккумуляторов, без заправки, и при этом можете даже спать, потому что эта система будет автоматически управлять движением. Естественно, это даст возможность освободить Москву и все мегаполисы от того кошмара, который мы сейчас имеем по части выбросов от транспортных средств.

Технологии Тесла, которые мы создали, мы назвали беспроводными технологиями. Они дают возможность создать беспроводные системы передачи в космическом пространстве и в атмосфере Земли. И таким образом мы сможем при наличии электрических ракетных двигателей полностью освободиться от этих пусков, когда вы за несколько минут сжигаете 80 тонн керосина в жидком кислороде или, еще хуже, ядовитое гидразиновое топливо, и перейти к такому режиму, когда вместо того чтобы иметь 5% полезной массы в массе ракеты, иметь 95% полезной массы в массе ракеты.

Все, что вы добавляете к той энергии, которую Земля получает от Солнца, ведет к тепловому загрязнению Земли и, в конечном счете, к повышению температуры. Даже если у вас нет парниковых газов, все равно вы загрязняете планету, увеличивая температуру. И, тем самым, то, что мы имеем сейчас летом... Говорят, что аномальная холодная зима в Европе, сибирские морозы в Африке - это говорит о том, что опять будет похолодание, а не потепление. На самом деле просто климат становится резко континентальным. И это очень тревожный звонок. То есть будет очень жарко летом, очень холодно зимой. А это всегда нехорошо, потому что я знаю, что последствия вот этой зимы - это не только то, что 180 человек погибло, но померзли сады в южных районах нашей страны. И я думаю, что то же самое можно сказать и об Испании, и о других странах.

Поэтому все-таки говоря о чистой энергетике будущего, о глобальной энергетике, мы должны иметь в виду, что эта энергетика должна основываться на энергетическом балансе между поступающей энергией от Солнца и тепловым излучением Земли.

Роль государства очень важна здесь. Во-первых, это поддержка, даже моральная поддержка новой энергетики. И плюс кадровые вопросы, финансирование пилотных проектов и так далее.

Я хочу сказать о моральной поддержке. У нас сейчас есть прекрасный президент Медведев, и есть прекрасный президент Америки Обама. Вот что говорит Обама: «Нация, которая лидирует в технологии чистой энергетики, возможно, будет лидером глобальной экономики». Я думаю, что президенты не сами пишут эти слова - им советники пишут, но советники достойные. А вот что говорит наш президент Дмитрий Анатольевич Медведев: «У атомной энергетики нет альтернативы». Я думаю, что все сидящие в этом зале поддерживают все-таки концепцию президента Обамы. Я не думаю, что Дмитрий Анатольевич сам это придумал. Это ему Кириенко написал. Но будущее атомной энергетики... Мало того что это небезопасно, что 70 лет реакторы потом должны отстаиваться, и некуда девать выбросы, что гигантские риски, что они увеличивают долю энергии, которую мы добавляем к энергии Солнца, и ведут к тепловому загрязнению планеты - это уже говорит о том, что эта энергетика не является энергетикой будущего.

(...) Мало кто знает, но в прошлом году установленная мощность бестопливных электростанций превысила установленную мощность атомных электростанций и составила 388 ГВт. Мы прошли вот такую интересную точку. Теперь будет колоссально наращиваться в объеме (примерно 60 ГВт в год) мощность установленных бестопливных электростанций, и будет чуть-чуть возрастать мощность атомных станций. Вот сравните: 60 ГВт было введено в прошлом году бестопливных, чистых электростанций, использующих энергию Солнца, по существу, и было введено три атомных электростанции мощностью 3,6 ГВт, которые строились больше шести лет.

Резюмируя, я могу сказать, что будет создана глобальная солнечная резонансная система, причем она будет создана совершенно точно до конца этого века, потому что нам нужно всего-навсего в той же Австралии найти площадь земли 200x200 км, и в той Мексике, и в той же Сахаре, что не представляет никакого труда. А все технические проблемы практически решены: КПД 25%, кремния миллионы тонн в год, производство станций 100 ГВт в год - все это абсолютно реально.

Второе наше предсказание заключается в том, что воздушные линии исчезнут, будут подземные линии. Будет использоваться высокочастотный электрический транспорт. Жидкое топливо будет получаться из биомассы энергетических плантаций. Космические корабли будут стартовать на электрической тяге, имея отношение массы полезного груза к стартовой массе 80-90% вместо сегодняшних 5%. Снабжение космических аппаратов будет осуществляться резонансными волноводными методами.

Сельское хозяйство полностью изменится. Будут работать электрические машины-роботы, которые будут черпать энергию из-под поля, на котором они работают. Они будут работать день и ночь, и без всякого участия человека.

Также проведены испытания, которые показали, что резонансные методы могут быть использованы для лечения болезней человека и животных, уничтожения сорняков (вместо пестицидов), обеззараживания воды, создания новых экологически чистых материалов.

Как результат всего этого набора технологий, в будущем, к концу этого столетия, 60-70% тепловой энергии и 80-90% электрической будут делаться с помощью бестопливных электростанций, под которыми я имею в виду в первую очередь солнечные электростанции и их производные: ветровые, гидравлические и т.д.

Мы придем к тому, с чего мы начинали. В XVII веке было 100% солнечной энергии, потому что не было ни угля, ни газа, ни нефти. К концу XXI века мы вернемся к этой ситуации. У нас будет газ, нефть и уголь, но человечество будет использовать солнечную энергию и позабудет обо всех этих торнадо, которые летом гуляют по полям Америки, да и по России тоже, этих ураганах, которые вызваны нестабильностью атмосферы, а причиной является все-таки вот это вмешательство человека, парниковые газы и перегрев Земли.

/ Манифест

Манифест стратегического общественного движения «Россия 2045»

Человечество превратилось в общество потребления и находится на грани тотальной утраты смысловых ориентиров развития. Интересы большинства людей сводятся в основном к поддержанию собственного комфортного существования.

Современная цивилизация с ее космическими станциями, атомными подводными лодками, айфонами и сегвеями не способна избавить человека от ограничений физических возможностей тела, болезней и смерти.

Нас не устраивают сегодняшние достижения научно-технического прогресса. Наука, работающая на удовлетворение потребительских нужд общества, не сможет обеспечить технологический прорыв.

Мы считаем, что мир нуждается в иной идеологической парадигме. В ее рамках необходимо сформулировать сверхзадачу, способную указать новый вектор развития для всего человечества и обеспечить проведение научно-технической революции.

Новая идеология должна утвердить в качестве одного из приоритетов необходимость использовать прорывные технологии для совершенствования самого человека, а не только его среды обитания.

Мы считаем, что можно и нужно ликвидировать старение и даже смерть, преодолеть фундаментальные пределы физических и психических возможностей, заданные ограничениями биологического тела.

Учеными разных стран мира уже разрабатываются отдельные технологии, способные обеспечить создание прототипа искусственного тела человека в течение ближайшего десятилетия. Страна, которая первой заявит о намерении объединить эти технологии и создать работающий кибернетический организм, станет лидером самого главного мирового технологического проекта современности. Этой страной должна быть Россия.

Мы считаем, что у нашей страны по-прежнему есть необходимый научно-технический потенциал, позволяющий реализовать столь амбициозную задачу. Такой проект сделает Россию мировым идеологическим лидером, а также возродит лидерство нашей страны в самых разных областях науки и техники.

Реализация этого технологического проекта неминуемо приведет к взрывному развитию инноваций и глобальным цивилизационным переменам, изменит уклад человеческой жизни.

По нашему мнению, не позднее 2045 года искусственное тело не только значительно превзойдет по своим функциональным возможностям существующее, но и достигнет совершенства формы и сможет выглядеть не хуже человеческого. Люди самостоятельно будут принимать решение о продолжении жизни и развития в новом теле после того, как все ресурсы биологического тела будут исчерпаны.

Новый человек получит огромный спектр возможностей, сможет легко переносить экстремальные внешние условия: высокие температуры, давление, радиацию, отсутствие кислорода и так далее. С помощью нейроинтерфейса человек будет способен дистанционно управлять несколькими телами различных форм и размеров.

Мы предлагаем реализовать не просто механистический проект по созданию искусственного тела, а целую систему взглядов, ценностей и технологий, которые помогут человеку развиваться интеллектуально, нравственно, физически, психически и духовно.

Мы предлагаем присоединиться к стратегическому общественному движению «Россия 2045» всем пассионариям: ученым, политикам, медийщикам, философам, футурологам, бизнесменам. Всем, кто разделяет наше видение будущего и готов совершить следующий эволюционный скачок.

Главные задачи движения:

  1. Создание в России мирового идеологического центра для разработки сценариев технологического прорыва. Установление связи с международным сообществом и привлечение к сотрудничеству наиболее перспективных зарубежных специалистов;
  2. Создание международного научно-исследовательского центра киборгизации с целью практического воплощения главного технопроекта — создания искусственного тела и подготовки человека к переходу в него;
  3. Экспертный отбор и поддержка наиболее интересных проектов, работающих на обеспечение технологического прорыва;
  4. Поддержка инновационных отраслей российской науки. Создание специальных учебных программ для школ и вузов;
  5. Создание информационных программ для теле-, радио- и интернет-вещания, проведение форумов, конференций, конгрессов, выставок, учреждение премий, а также продюсирование книг, фильмов, компьютерных игр;
  6. Формирование культуры, связанной с идеологией будущего, техническим прогрессом, искусственным интеллектом, мультителесностью, бессмертием, киборгизацией.
1

В статье показано значение и практическая ценность научных проектов, которая необходима будущим специалистам для формирования научно-исследовательских навыков и совершенствования знаний. Наряду с этим, рассмотрены различные энергетические установки и их принцип работы. В статье отмечено, что при бурном развитии научно-технического процесса человечество естественным образом должно придти к потреблению альтернативных источников энергии, энергии Солнца, воды, ГЭС, гетермальной энергетики, энергии ветра и т.д. Все эти виды энергии относятся практически к неисчерпаемым источникам энергии, если смотреть на будущее стратегически, она имеет древнюю историю, альтернативная энергетика станет в перспективе первой необходимостью. Поэтому рассмотрение современной энергетики, рассмотрение проблем и перспектив развития в научных проектах школьников имеет большое познавательное значение.

современная энергетика

геотермальная станция

ядерная энергетика

Управляемый Термоядерный Синтез

энергия Солнца

энергия ветра

физика полупроводников

1. Аметистов Е.В. Основы современной энергетики. – М.: Изд-во МЭИ, 2004.

2. Басов Н.Г., Лебо И.Г., Розанов В.Б. Физика лазерного термоядерного синтеза. – М.: Знание, 1988. – 36 с.

4. Макарова А.А. //Российский энергетический форум. – 2005. – 93 с.

5. Норенков И.П., Зимин А.М. Информационные технологии в образовании. – М.: МГТУ им. Н.Э. Баумана, 2004. – 48 с.

Современное общество живет в нестабильном неспокойном мире. XXI век поставил ряд сложных глобальных проблем, от решения которых зависит будущее человечества. Эти проблемы часто называют вызовами XXI века.

Первый вызов - энергетический. Не за горами истощение ресурсов традиционных источников энергии в недрах земли. В то же время потребление энергии, особенно в индустриально развитых странах, продолжает расти. в такой ситуации остается надеется только на труды ученых, на то, что учеными, с одной стороны, будут открыты новые пока неизвестные источники энергии, с другой стороны, разработаны новые энергосберегающие технологии.

Второй вызов - экологический. Человечество хотя и осознало необходимость охраны окружающей среды и использования экологически безопасных технологий, но разработка природоохранных мероприятий и безвредных технологий пока существенно отстает от потребностей экосистемы.

Для решения этих проблем наметились следующие тенденции. Первая тенденция - постепенный переход к постиндустриальному обществу на основе развития и широкого применения информационных технологий. Вторая тенденция - повышение культурного и профессионального уровня большинства жителей Земли на основе развития и распространения методик, средств и технологий образования.

Следовательно, в современных условиях существенно возрастает роль образования, растут потребности общества в образовательных услугах.

Итак, информационные технологии и образование - эти две тенденции в совокупности становятся теми сферами человеческих интересов и деятельности, которые знаменуют эпоху XXI века и должны стать основой для решения стоящих перед человечеством проблем .

Очевидно, что круг вопросов, составляющих предмет информационных технологий в образовании,школьных проектов чрезвычайно широк и попытка изложить все аспекты проблемы в одной статье чрезвычайно сложно. Поэтому в данной статье сделан акцент на вопросы научно-исследовательских навыков и совершенствований знаний учеников на основе подготовки научных проектов, научных докладов .

При бурном развитии общества, в век научно-технического прогресса,в век стремительного компьютерного развития, в век прогресса нанотехнологии молодежь должна интенсивно заниматься основными энергетическими проблемами. Так как современное общество представить без энергетики практически невозможно. На смену традиционным источникам несомненно придут альтернативные источники энергии. Природные запасы сырьевых ресурсов нефть,газ, другие источники все таки рано или поздно будут исчерпаны. Но самое главное не это, в любом случае человечество естественным образом должно придти к потреблению альтернативных источников энергии, энергии Солнца, воды, ГЭС, гетермальной энергетики,энергии ветра и т.д.

Все сказанное относится практически к неисчерпаемым источникам энергии, если смотреть на будущее стратегически, альтернативная энергетика имеет историю в миллионы лет. Данный период в жизни человечества имеет просто определенный исторически этап, к альтернативным источникам энергии без никаких обсуждений мы придем в перспективе в ближайшие 30-50 лет несомненно. Этот исторически этап человечеством тоже будет пройден, независимо от того, когда закончится уголь, нефть и т.д., ведь каменный век закончился не из-за того что закончились камни.

В свете выше сказанного, обсуждение вопросов альтернативных источников энергии, подготовка к научным проектам, научно-исследовательским работам среди школьников для совершенствования своих знаний и своего творческого развития представляет большой интерес.

Известно, что ученики старших классов школы занимаются научными проектами, различными научно - исследовательскими работами, все это формирует определенные навыки для дальнейшей научной работы. Занятия научными проектами также служит мотивационным фактором при изучении основных закономерностей современной физики. Здесь можно привести такой пример: допустим, что ученик старшего класса готовит доклад на тему «Современная энергетика, ее возможности и перспектива будущей энергетики». Для подготовки такого доклада требуются знания из области ядерной физики, атомной физики, термодинамики и молекулярной физики, оптики и других разделов физики. Помимо этого школьник должен разбираться в технических вопросах проекта, во многих характеристиках энергетических установок, расчетах и формулах различных ветряных, геотермальных и других установок, схемах энергоблоков и системы безопасности энергоустановок.

Теперь попытаемся разобраться принципом действия различных установок, видами современной энергетики, использованием этих энергий в производственной сфере, промышленности и т.д.

Ясно, что с геотермальными установками школьники никогда не сталкивались, но и не слышали об этом. Естественно чтобы знать об этом кое-какую информацию,они должны искать соответствующий материал об этом в справочнике или в интернете. После таких поисков они уже будут знать об этом виде энергии.

В целом здесь возникает множество вопросов,например что такое геотермальная энергия, где она используется? Геотермальная станция (ГеоТЭС) это вид электрической станции, которая вырабатывает электрическую энергию из тепловой энергии подземных источников (например гейзеров). Эта энергия является возобновляемым ресурсом. Главным достоинством геотермальной энергии является ее практическая неиссякаемость и полная независимость от условий окружающей среды, времени суток и года.

Существуют следующие принципиальные возможности использования тепла земных глубин. Воду или смесь воды и пара в зависимости от их температуры можно направлять для горячего водоснабжения и теплоснабжения, для выработки электроэнергии либо одновременно для всех трех целей. Высокотемпературное тепло околовулканического района и сухих горных пород предпочтительно использовать для выработки электроэнергии и теплоснабжения. От того, какой источник геотермальной энергии используется, зависит устройство станции .

Недостатками геотермальной энергии являются высокая минерализация термальных вод большинства месторождений и наличие токсичных соединений и металлов, что исключает в большинстве случаев сброс термальных вод в природные водоемы.

В некоторых европейских странах на производственной сфереуже используют геотермальную энергию, т.е. энергию подземных источников. Крупнейшими производителями геотермальной энергии являются такие страны как США, Филиппины, Мексика, Италия. Вот сколько полезной и необходимой информации можно извлечь из этих данных, можно также ознакомиться с принципиальным устройством геотермальной станции.

Теперь поговорим про ядерную энергетику, которая представляет главную составляющую современной энергетики. Современную энергетику, вообще будущее всей энергетики трудно представить без термоядерной энергии. Интересно как представляют себе школьники, студенты термоядерную энергию? Мы думаем, что современная молодежь, независимо от своей будущей профессии должна себе хорошо представлять термоядерную энергию, ее перспективу, преимущества и технические характеристики установки и т.д. Здесь возникают множество вопросов, например такой вопрос какие государства планируют установки для термоядерной энергии, какие сложности при этом возникают и т.д.

Ядерная энергетика имеет огромный потенциал по сравнению с другими видами энергии. Ядерная энергетика - это отрасль энергетики, занимающаяся получением и использованием ядерной энергии. Обычно для получения ядерной энергии используют цепную ядерную реакцию деления ядер урана - 235 или плутония. Но имеются еще огромные потенциальные резервы развития в легких ядрах, которые могут быть реализованы в реакциях управляемого термоядерного синтеза .

Современная ядерная энергетика основывается в основном на атомных электростанциях. Атомная электростанция представляет собой ядерную установку для производства энергии в заданных режимах и условиях применения, распологающуюся в пределах определенной проектом территории, на которой для осуществления этой цели используются ядерный реактор и комплекс необходимых систем.

Управляемый Термоядерный Синтез (УТС) использует ядерную энергию выделяющуюся при слиянии легких ядер, таких как ядра водорода или его изотопов дейтерия и трития или дейтерия и дейтерия. Дейтерий, или тяжелый водород, имеет ядро, состоящее из одного протона и одного нейтрона. Дейтерий присутствует в воде в пропорции одна часть на 6500 частей обычного водорода. Тритий, или сверхтяжелый водород, имеет ядро, состоящее из одного протона и двух нейтронов. В естественном виде он в природе не существует из-за своей радиоактивности, но может быть получен в результате ядерных реакций при взаимодействий нейтронов с ядрами лития. При радиоактивном распаде трития (период его полураспада 13,5 лет) испускаются электроны и нейтрино. Ядерные реакции синтеза легких ядер широко распространены в природе, они являются источниками энергии внутри звезд и Солнца .

Подводя итоги вышесказанному можно сделать следующее заключение:

В случае повсеместного распространения термоядерных электростанций человечество получит дешевую электроэнергию и, как результат, вытеснение современных энергоносителей, запасы которых будут к тому времени в значительной мере исчерпаны, из индустрии и бытового хозяйства.

В целом отсюда вытекает, что для осуществления Управляемого Термоядерного Синтеза потребуются огромные технические установки, которые в ближайщее время технически трудно осуществить, ясно одно ядерная энергетика - это энергия будущего. В природе кроме ядерной энергетики, геотермальной энергии имеются также множество альтернативных источников энергии.

Ограниченность запасов природных ресурсов, а также вред традиционных источников энергии для окружающей среды вынуждают человечество искать альтернативные источники энергии. К таким относятся гелиоэнергетика, ветроэнергетика, энергетика биомассы, энергетика проливов, отливов и т.д. Вот про эти альтернативные виды энергии, их принцип действия, про их преимущества и недостатки современная молодежь должна иметь ясное представление, так как они образуют определенные виды энергии которую необходимо уже использовать в наше время.

В наше время энергия является одним из главных факторов экономического роста, увеличения производительности труда и повышения качества жизни населения. Потребителями энергии являются как отдельные люди, так и различные промышленные обьекты. В результате роста населения и развития промышленности за последние сто лет потребление энергии в мире возросло в четырнадцать раз. По прогнозам некоторых демографов население Земли к середине 21 века достигнет 9 млрд человек. В связи с этим естественно можно ожидать рост потребностей энергии.

На основе изучения традиционных видов энергии, альтернативных источников энергии школьники старших классов, студенты ознакомятся с принципом действия приборов и установок работающих для этих электростанции, их преимуществами и недостатками, системами безопасности и т.д. Помимо этого им придется знать физические процессы происходящие в этих установках, способы преобразования солнечной энергии, энергии ветра, энергию водного потока в электрическую энергию.

Например энергия Солнца может быть преобразована в теплоту или холод, движущую силу и электричество. Здесь можно получить полный спектр знанийиз раздела оптики, например в каком диапазоне длин волн происходит излучение Солнца, диапазон ультрафиолетовых волн, диапазон световых волн, диапазон инфракрасных волн. Также можно получить сведения о количестве энергии излучаемое Солнцем это приблизительно 1,1?1020 кВт?ч в секунду. Киловатт?час - это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов.

Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5?1018) кВт?ч ежегодно. Кроме этого например количество Солнечной энергии, падающей на поверхность Земли, изменяется вследствие движения Солнца, времени года, от географического месторасположения участка, оно зависит также от различных атмосферных явлений, от облаков, от горных местностей, от равнины и т.д. Вот такое количество огромных сведений можно получить от излучения Солнца, эти сведения из области физики, географии, астрономии и химии. Все эти сведения обогащают знания школьников из различных областей физики, географии, химии и т.д. .

Следует отметить также, что излучение Солнца проникающий внутрь здания зависит от угла падения излучения, от материала стен здания, от расположения здания, от теплопроводности материала, от конвекции и т.д.

Можно привести также огромное количество полезной информации из различных областей наук получаемой школьником при подготовке к научному проекту, которые обогащают знания школьников.

Здесь также отметим преимущества преобразования солнечной энергии в электрическую энергию, работа солнечных батареи, где принцип работы основан на р-n-переходе, или другими словами это электронно-дырочный переход. Это уже область физики полупроводника, в которой имеет место пространственное изменение типа проводимости от электронной nк дырочной р проводимости.

При знакомстве с ветроэнергетическими установками школьники получают информацию как происходит преобразование кинетической энергии потока ветра в электрическую энергию, принципом работы этих установок. Они получают характеристические параметры ветра: скорость ветра, энергия ветра, мощность этой энергии, коэффициент полезного действия установки, экономически эффект от ветроэнергетических установок .

Одним словом подводя итоги можно сделать общее заключение:

При подготовке и работе над школьными проектами школьники получают массу всевозможных полезных информации из различных областей науки, физики, географии, химии, биофизики и т.д. Все полученные информации стимулируют молодежь для формирования у них научно-исследовательских навыков и совершенствования знаний в основном по курсу современной физики, эти знания необходимы также в дальнейшем при работе в промышленности, производстве и некоторых отраслях техники.

Библиографическая ссылка

Абекова Ж.А., Оралбаев А.Б., Саидахметов П.А., Ашенова А.К. СОВРЕМЕННАЯ ЭНЕРГЕТИКА, ЕЕ ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ РАЗВИТИЯ В НАУЧНЫХ ПРОЕКТАХ ШКОЛЬНИКОВ // Международный журнал экспериментального образования. – 2016. – № 1. – С. 13-16;
URL: http://expeducation.ru/ru/article/view?id=9377 (дата обращения: 06.06.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Время не стоит на месте. В глубокой древности люди использовали как источник энергии только собственные силы, или, по возможности, силы домашних животных. Потом первым внешним источником энергии, который научились использовать люди, был огонь. Все, что вначале умели получить от огня, это приготовление еды и обогрев своего жилища. Сегодня на службе у человечества находятся источники энергии, которые превышают человеческую силу в миллионы раз. Сейчас мы готовим еду не только с помощью огня, специальной техникой поднимаем тонны грузов, используя ракеты, покоряем космос, заглядываем в глубины Земли и строим миллионы городов. Тем не менее, в мире все чаще возникают локальные энергетические кризисы, связанные с недостатком энергетических ресурсов.

Закон энергии

Энергия никогда не исчезает, она может менять форму и накапливаться. Например, растения нуждаются в солнечном свете, они превращают солнечную энергию и накапливают ее. Вместе с тем, они отдают ее нам в виде съедобных продуктов, люди и животные потребляют эти растения и превращают эту энергию, которая в них накапливается, например, в мышечную работу. С другой стороны, при сжигании дров на костре также освобождается энергия, происходящая от Солнца. Кроме того, все ископаемые ресурсы планеты, прежде всего уголь, природный газ, нефть являются накопителями солнечной энергии. Все эти топливно-энергетические ресурсы образовались из останков животных и растений, которые существовали миллионы лет назад, под действием давления и чрезвычайно высокой температуры в земной коре.

Средневековому человеку показалось бы волшебством, если бы перед его глазами кто-нибудь добыл свет из угля или привел бы в движение машину с помощью нефти. Но это волшебство заключается только в том, чтобы сделать возможным накопление энергии и переход ее из одной формы в другую. В наше время этот процесс стал для всех настолько обычным, что мало кто задумывается об энергетической проблеме и о тех ресурсах, которые мы для этого берем. С того времени, когда человечество начало разгадывать секреты энергии, оно старается добыть энергию с наименьшими затратами. Идеальным вариантом было бы изобрести машину времени, так называемую «перпертум мобиле», которая производила бы энергию сама, получая ее из ничего. Но, к сожалению, такой вечный двигатель, который бы решил все проблемы энергетических ресурсов, создать невозможно. Общее количество энергии всегда остается неизменным, ее нельзя создать, можно лишь освободить накопившуюся энергию и превратить в другую: световую, электрическую, тепловую, физическую, химическую и т. д.

Вода как источник энергии

Человек может использовать мощную силу воды, на некоторых этапах вмешиваться в природный кругооборот воды, чтобы таким образом добывать энергию. Сегодня на гидроэлектростанциях производится электроэнергия, которую можно накапливать или же сразу потреблять по назначению.

Невероятной силы морские волны ежесекундно разбиваются о многочисленные побережья, мощная энергия их выполняет свою работу. Но человечество до сих пор не в силах использовать силу морских волн для производства энергии, хотя существует бессчетное количество теоретических моделей и идей их реализации для решения энергетической проблемы. С недавнего времени, а именно после аварии на Чернобыльской АЭС правительства многих морских государств всерьез заинтересовались этим безопасным источником энергии, до этого проводились испытания в основном в области атомной энергетики.

Уголь

Все виды угля - это результат процесса, длившегося миллионы лет, во время которого останки разнообразной растительности разложились и превратились под действием высокого давления в торф, затем - в уголь. Эти залежи на протяжении миллионов лет все глубже и глубже проникали в земную кору, покрываясь сверху новыми пластами. Например, слой торфа в 50 метров уплотнялся до пласта угля в 3 метра. Первыми, еще в I столетии нашей эры, с помощью угля отапливали свои жилища римляне. Исследователи считают, что торф использовался для отопления еще в доисторический период. И только в XVI веке уголь стали использовать в Европе как топливо.

Уголь и нефть по своему происхождению и химическому составу принадлежат к одной группе. На самом деле из угля так же, как из нефти, можно получить бензин. Этот способ был разработан в Германии во время Второй мировой войны, когда нефти для производства бензина не хватало. Этот метод заключается в том, что в процессе сжигания уголь размельчается и проходит определенные химические процессы, в результате чего получается отличное топливо.

Нефть

Как и другие виды ископаемого топлива, которое человечество сжигает для получения тепла и электроэнергии, нефть имеет чрезвычайно почтенный возраст. Самые старые месторождения нефти были образованы 600 млн лет назад. Нефть заполняла все пустоты и щели земной коры, создавая громадные месторождения. В наше время они активно отыскиваются, бурятся скважины и добываются огромные запасы этих залежей.

Из нефти производят все больше и больше веществ, потребляемых человечеством. Бензин и дизельное топливо - не единственные продукты, потребляемые человеком. Нефть является сырьем для производства лекарств, искусственных тканей, ядов, минеральных удобрений, косметики, пластмассы. Мы даже не подозреваем, насколько человечество зависимо от этих топливно-энергетических ресурсов. Не зря самые богатые страны в мире - это страны-добытчики и производители нефти. В наше время везде господствует нефть. Ни одна другая форма по мощности пока не может заменить нефть как источник энергии.

Природный газ

Газ, используемый для отопления, приготовления еды или производства электроэнергии, - это в большинстве случаев пропан, бутан или природный газ. Он был обнаружен во время бурения первых нефтяных скважин почти случайно. Сегодня природный газ обеспечивает пятую часть мировой потребности в энергии.

Природный газ, который сгорает во время приготовления еды, выделяет энергии в два раза больше, чем электрический ток, производимый тепловыми электростанциями. Природный газ, так же как и уголь, является ископаемым топливом, но по своему происхождению ближе к нефти. Именно поэтому он добывается вместе с нефтью или в виде самостоятельных газовых образований. Проще всего добывать природный газ из месторождений, которые находятся под землей, как на Ближнем Востоке или в Сибири. Безопасность при его выработке обеспечивается системой соединительных труб и вентилей, с помощью которых регулируют давление, так как газовые месторождения постоянно находятся под огромным давлением.

Главные европейские месторождения газа находятся в Италии, Франции и Голландии, а также в Северном море, возле побережья Великобритании и Норвегии. Кроме этого, Россия поставляет сибирский газ разветвленной системой газопроводов в страны Центральной Европы. Россия - главный поставщик газа, из Сибири поступает третья часть всех используемых в мире запасов газа.

Энергия из атомов

Атомную энергию человечество научилось получать на электростанциях путем расщепления ядра атома урана. Именно этот элемент имеет нестабильное ядро и легче всего расщепляется под действием нейтронов. В результате распада ядра освобождаются новые нейтроны, которые, в свою очередь, расщепляют другие ядра атомов. Этот процесс превращается в цепную реакцию и освобождает огромное количество энергии, которая используется для превращения воды в пар, приводящий в движение турбину и электрогенератор. К сожалению, этот способ решения энергетической проблемы небезопасный, вместе с энергией атомных ядер происходит радиоактивное излучение, опасное для всех живых организмов. Поэтому защита с помощью специальных кожухов на таких электростанциях должна быть максимальной.

Мягкие энергии

По мнению ученых, решение энергетической проблемы в будущем за мягкими альтернативными видами энергии. Существуют такие формы, как энергия ветра, биоэнергия и солнечная энергия. Они не тратят полезные ископаемые и не вредят окружающей среде. Еще их называют возобновляемыми источниками энергии. До тех пор, пока существует жизнь на Земле, сила ветра, биоэнергия и солнечная энергия неисчерпаемы, а ископаемые источники в виде угля, газа и нефти когда-нибудь исчезнут.

Биоэнергия

Биоэнергия - энергия, которая вырабатывается из растений. Для животных и людей растения являются самым важным источником энергии и пищевым продуктом. Растения получают запас энергии непосредственно от Солнца, древесина - носитель возобновляемой биоэнергии. Но потребности нашего индустриального общества настолько велики, что вся древесина на планете сможет удовлетворить только небольшую ее часть, не решая проблемы энергетической. Во многих странах древесина выступает основным источником энергии. Неконтролируемая вырубка ведет к уменьшению количества деревьев, поскольку часто для их насаждений не хватает денег. В таком случае этот источник постепенно становится невозобновляемым, что станет одной из причин энергетической проблемы.

Альтернативным и перспективным методом получения энергии считается производство биогаза. Он формируется из разрушенных веществ животного и растительного мира при отсутствии контакта с воздухом. Сельские хозяйства, где собирается в виде отходов много биомассы, могут использовать для производства метана специальные установки биогаза. Работа таких установок не вредит окружающей среде, а их использование не требует никаких затрат. Решение энергетической и сырьевой проблемы именно в таких альтернативных источниках. Но, конечно, сначала они должны быть построены, а первые опыты всегда связаны с большими расходами. Интересный способ расходовать меньше бензин, например, нашли в Бразилии. Они производят биоспирт - жидкость, получаемую из брожения сахарного тростника и кукурузы. Этот алкоголь добавляется к обычному бензину. Таким образом, страна становится менее зависимой от импорта бензина.

Еще один пример использования биоэнергии представляют собой калифорнийские побережья. На морских фермах выращивается одна из разновидностей морских водорослей, которые ежедневно вырастают на полметра. Их также перерабатывают для получения бензина, а другие виды водорослей используют как сырье на тепловых электростанциях, уменьшая энергетическую и сырьевую проблему.

Энергия ветра

Ветер - один из традиционных источников энергии. Еще в VII веке до н. э. в Персии использовали ветряки, а в 1920 году в США впервые ветряк использовали для производства электроэнергии. Еще спустя 10 лет в Австрии и Баварии были построены ветряные установки, которые обеспечивали собственным электричеством целые местности.

Современные силовые установки производят электроэнергию. С помощью силы ветра движутся электрогенераторы, которые питают электросеть или же накапливают энергию в аккумуляторных батареях. По мнению специалистов, использование силы ветра имеет большое будущее, если человечество отдаст предпочтение развитию технологии альтернативной энергетики, а не атомной энергетике и использованию нефти как источника энергии.

Солнечная энергия

С точки зрения производства энергии, мы можем рассматривать Солнце как разновидность атомного реактора чрезвычайной мощности. Только миниатюрная частичка достигает Земли, но даже она дает возможность жизни. Можно ли превращать солнечную энергию непосредственно в электрическую? Да, это вполне возможно с помощью солнечных батарей. Уже сегодня везде, где ярко светит Солнце и потребности в электроэнергии небольшие, получают энергию непосредственно от Солнца. Солнечные батареи - это пластины, которые имеют два чрезвычайно тонких слоя. Один слой состоит из кремния, второй - из кремния и бора. Вместе с солнечным светом, который попадает на солнечную батарею, на ее внешний слой проникают фотоны - мельчайшие частички света, излучаемые Солнцем. Они приводят в движение электроны, перенося их во второй слой и, таким образом, вызывают электрическое напряжение. Перемещаемые электроны попадают в накопитель тока, затем - в электрические проводники. Таким образом, например, станции на солнечных батареях уже решают энергетическую проблему Дальнего Востока.

Солнечные батареи постоянно совершенствуются. Пока они еще очень дорогие, но надеемся, что в недалеком будущем они станут достаточно эффективными и дешевыми и смогут решить глобальную энергетическую проблему, удовлетворить значительную часть потребностей человечества в электроэнергии. Такие солнечные фермы сейчас находятся в нежилых краях из-за чрезвычайной жары. Перспективы использования солнечной энергии огромные, по мнению специалистов, если техника для производства водорода будет дальше развиваться, то накопленную в пустынных районах солнечную энергию можно будет доставлять в виде водорода к странам-потребителям.

Зачем беречь энергетические запасы?

Залежи нефти, угля и природного газа, образованные нашей планетой на протяжении миллионов лет, человечество тратит за несколько лет. Когда мы бездумно тратим эти запасы с увеличением добычи энергоносителей, мы обворовываем своих потомков.

Этим мы нарушаем баланс энергии на Земле, ведь соотношение полученной энергии и отдаваемой обратно в космос должно быть уравновешенным. Если же человечество уничтожает и сжигает энергетические запасы, то образуются газы, которые препятствуют возвращению в космос излишка солнечной энергии. Как результат, возникает глобальная энергетическая проблема - наша планета становится теплее, возникает явление, называемое парниковым эффектом. Парниковый эффект может настолько изменить мировой климат, что произойдет расширение пустынь, образуются опустошающие смерчи, растает лед на полюсах, значительно поднимется уровень моря, множество побережий будут залиты водой.

Кроме того, время истощения энергетических ресурсов уже пришло. Ученые бьют тревогу, доказывая, что энергетических ископаемых запасов хватит на несколько десятков лет, затем потребление энергии снизится и благосостояние человечества тоже. Решение проблемы в быстром переходе общества к разумному потреблению энергетических запасов и разработке новых альтернативных и безопасных методов добычи энергии.

Проблемы и перспективы современной энергетики
Специалисты подсчитали, что в США потребление энергии в 6 раз превосходит среднемировой уровень и в 30 раз - уровень развивающихся стран.

Ученые предлагают следующую информацию к размышлению. Если бы развивающиеся страны сумели добиться роста потребления минеральных ресурсов до уровня Соединенных Штатов, то разведанные запасы нефти истощились бы через 7 лет, природного газа - через 5 лет, угля - через 18 лет. Если учесть еще и потенциальные запасы, до которых пока не добрались геологи, то природного газа должно хватить на 72 года, нефти в обычных скважинах - на 60 лет, а в сланцах и песках, откуда ее чрезвычайно трудно и дорого выкачивать, - на 660 лет. Угля - на 350 лет.
Предположим, что на нужды энергии можно использовать, как нефть, всю массу нашей планеты. Если скорость увеличения потребления энергии останется такой же, как сегодня, это “горючее” будет сожжено целиком всего за 342 года.
При современных темпах развития техники производство энергии на Земле через 240 лет превысит количество солнечной энергии, падающей на нашу планету, через 800 лет - всю энергию, выделяемую солнцем, а через 1300 лет превзойдет полное излучение всей нашей Галактики.
Однако главная проблема современной энергетики - не истощение минеральных ресурсов, а угрожающая экологическая обстановка.

Атомная энергетика
Исходя из опыта, человечеству придется отказаться от атомной энергетики по 4 причинам.
Во-первых, каждая атомная электростанция независимо от степени ее надежности является стационарной атомной бомбой, которая в любой момент может быть взорвана путем диверсии, бомбардировкой с воздуха, обстрелом ракетами или обычными артиллерийскими снарядами.
Во-вторых, на примере Чернобыля мы на собственном опыте убедились, что авария на атомной электростанции может произойти по чьей-то небрежности. С 1971 по 1984 гг. на АЭС мира произошла 151 серьезная авария, при которой случился “значительный выброс радиоактивных материалов с опасным воздействием на людей”. С тех пор года не проходило, чтобы в той или иной стране мира не происходило серьезной аварии на АЭС, а иногда - и по несколько аварий.
Втретьих, реальной опасностью являются радиоактивные отходы атомных электростанций, которых за прошедшие десятилетия накопилось довольно много, и накопится еще больше, если атомная энергетика займет доминирующее положение в мировом энергобалансе. Сейчас отходы атомного производства в специальных контейнерах зарывают глубоко в землю или опускают на дно океана. Эти способы не являются безопасными: с течением времени защитные оболочки разрушаются, и радиоактивные элементы попадают в воду и почву, а потом - и в организм человека.
Вчетвертых, атомное горючее может быть с одинаковой эффективностью использовано и в АЭС, и в атомной бомбе. Совет безопасности ООН пресекает попытки развивающихся тоталитарных государств ввозить атомное горючее якобы для развития атомной энергетики. Это закрывает атомной энергетике дорогу в будущее в качестве доминирующей части мирового энергобаланса.
Но атомная энергетика имеет и немаловажные достоинства. Американские специалисты подсчитали, что, если бы к началу 90-х годов в СССР все атомные электростанции заменили на угольные той же мощности, то загрязнение воздуха стало бы настолько велико, что это привело бы к 50-кратному увеличению преждевременных смертей в XXI в. в сравнении с самыми пессимистичными прогнозами последствий чернобыльской катастрофы.

Альтернативная энергетика. Теория и практика
Альтернативная энергетика основана на использовании возобновляемых (или "чистых") источников энергии. К таковым относятся энергогенерирующие устройства, работающие с использованием энергии Солнца, ветра, приливов и отливов, морских волн, а также подземного тепла планеты.

Солнечная энергия
Ведущим экологически чистым источником энергии является Солнце. В настоящее время используется лишь малая часть солнечной энергии из-за того, что существующие солнечные батареи имеют сравнительно низкий коэффициент полезного действия и очень дороги в производстве. Специалисты утверждают, что гелиоэнергетика могла бы одна покрыть все мыслимые потребности человечества в энергии на тысячи лет вперед. Но перед ней встает множество проблем, связанных с сооружением, размещением и эксплуатацией гелиоэнергоустановок на тысячах квадратных километров земной поверхности. Поэтому общий удельный вес гелиоэнергетики был и останется довольно скромным.

Энергия ветра
По оценке Всемирной метеорологической организации, потенциал энергии ветра в мире составляет 170 трлн кВтч в год.
У энергии ветра есть несколько существенных недостатков, которые затрудняют ее использование. Прежде всего, она сильно рассеяна в пространстве, поэтому необходимо строить ветроэнергоустановки, способные постоянно работать с высоким КПД.
Ветер очень непредсказуем: часто меняет направление, вдруг затихает даже в самых ветреных районах земного шара, а иногда достигает такой силы, что ломает ветряки. Ветроэнергостанции небезвредны: они мешают полетам птиц и насекомых, шумят, отражают радиоволны вращающимися лопастями. Но у энергии ветра есть главное преимущество - экологическая чистота. К тому же, недостатки можно уменьшить, а то и вовсе свести на нет.
Разработаны ветроэнергоустановки, способные эффективно работать при самом слабом ветерке. Шаг лопасти винта автоматически регулируется таким образом, чтобы постоянно обеспечивалось максимально возможное использование энергии ветра, а при слишком большой скорости ветра лопасть также автоматически переводится во флюгерное положение, так что авария исключается.
Разработаны и действуют так называемые циклонные электростанции мощностью до ста тысяч киловатт, где теплый воздух, поднимаясь в специальной 15-метровой башне и смешиваясь с циркулирующим воздушным потоком, создает искусственный “циклон”, который вращает турбину. Такие установки намного эффективнее и солнечных батарей, и обычных ветряков.
Чтобы компенсировать изменчивость ветра, сооружают огромные “ветряные фермы”. Ветряки там стоят рядами на обширном пространстве и занимают много места. В Дании “ветряную ферму” разместили на прибрежном мелководье Северного моря, где и она никому не мешает, и ветер устойчивее, чем на суше.
Положительный пример использования энергии ветра показали Нидерланды и Швеция (последняя приняла решение на протяжении 90-х гг. построить и разместить в наиболее удобных местах 54 тыс. высокоэффективных энергоустановок).
В мире сейчас работает более 30 тыс. ВЭУ разной мощности. Германия получает от ветра 10% своего электричества, а всей Западной Европе ветер дает 2500 МВт электроэнергии.

Гидроэнергия
Гидроэнергостанции - еще один из источников энергии, претендующих на экологическую чистоту. В начале XX века крупные и горные реки мира привлекли к себе внимание, а к концу столетия большинство из них было перегорожено каскадами плотин, дающими дешевую энергию.
Однако это привело к огромному ущербу для сельского хозяйства и природы: земли выше плотин подтоплялись, на территориях, расположенных ниже, падал уровень грунтовых вод, терялись огромные пространства земли, уходившие на дно гигантских водохранилищ, прерывалось естественное течение рек, загнивала вода в водохранилищах, уменьшались рыбные запасы. На горных реках все эти минусы сводились к минимуму, зато добавлялся еще один: в случае землетрясения, способного разрушить плотину, катастрофа могла привести к тысячам человеческих жертв. Поэтому современные крупные ГЭС не являются действительно экологически чистыми. Однако минусы ГЭС породили идею мини-ГЭС, которые могут располагаться на небольших реках или даже ручьях, а их электрогенераторы способны работать при небольших перепадах воды или будучи движимыми лишь силой течения. Эти же мини-ГЭС могут быть установлены и на крупных реках с относительно быстрым течением.
Детально разработаны центробежные и пропеллерные энергоблоки рукавных переносных гидроэлектростанций мощностью от 0,18 до 30 кВт. При поточном производстве унифицированного гидротурбинного оборудования мини-ГЭС способны конкурировать с максивариантами по себестоимости одного киловаттчаса. Также несомненным плюсом является возможность их установки даже в самых труднодоступных уголках той или иной страны: все оборудование можно перевезти на одной вьючной лошади, а установка или демонтаж занимает всего несколько часов.
Еще одной очень перспективной разработкой, не получившей пока широкого применения, является недавно созданная геликоидная турбина Горлова, названная по имени ее создателя. Ее особенность заключается в том, что она не нуждается в сильном напоре и эффективно работает, используя кинетическую энергию водяного потока - реки, океанского течения или морского прилива. Это изобретение изменило привычное представление о гидроэнергостанции, мощность которой ранее зависела только от силы напора воды, то есть от высоты плотины ГЭС.

Энергия приливов и отливов
Несоизмеримо более мощным источником водных потоков являются приливы и отливы. Проекты приливных гидроэлектростанций детально разработаны в инженерном отношении, экспериментально опробованы в нескольких странах, в том числе на Кольском полуострове в России. Продумана даже стратегия оптимальной эксплуатации ПЭС: накапливать воду в водохранилище за плотиной во время приливов и расходовать ее на производство электроэнергии, когда наступает “пик потребления” в единых энергосистемах, ослабляя тем самым нагрузку на другие электростанции.
Сегодня ПЭС неконкурентоспособны по сравнению с тепловой энергетикой.
Практически на сооружение ПЭС в наиболее благоприятных для этого точках морского побережья, где перепад уровней воды колеблется от 1-2 до 10-16 метров, потребуются десятилетия или даже столетия. Но проценты в мировой энергобаланс ПЭС должны начать давать уже на протяжении XXI века.
Первая приливная электростанция мощностью 240 МВт была пущена в 1966 г. во Франции в устье реки Ранс, впадающей в пролив ЛаМанш, где средняя амплитуда приливов составляет 8,4 м. Открывая станцию, президент Франции Шарль де Голль назвал ее выдающимся сооружением века. Несмотря на высокую стоимость строительства, которая почти в 2,5 раза превосходит расходы на возведение речной ГЭС такой же мощности, первый опыт экплуатации приливной ГЭС оказался экономически оправданным. ПЭС на реке Ранс входит в энергосистему Франции и эффективно используется.
Существуют проекты крупных ПЭС мощностью 320 МВт (Кольская) и 4000 МВт (Мезенская) на Белом море, где амплитуда приливов составляет 7-10 м.
Планируется использовать также огромный энергетический потенциал Охотского моря, где местами, например, в Пенжинской губе, высота приливов достигает 12,9 м, а в Гижигинской губе - 12-14 м. Благоприятные предпосылки для более широкого использования энергии морских приливов связаны с возможностью применения геликоидной турбины Горлова, которая позволяет сооружать ПЭС без плотин, сокращая расходы на строительство.

Энергия волн
Уже сегодня инженерно разработаны и экспериментально опробованы высокоэкономичные волновые энергоустановки, способные эффективно работать даже при слабом волнении или вообще при полном штиле. На дно моря или озера устанавливается вертикальная труба, в подводной части которой сделано “окно”, попадая в которое, глубинная волна (а это почти постоянное явление) сжимает воздух в шахте, а тот крутит турбину генератора. При обратном движении воздух в турбине разрежается, приводя в движение вторую турбину. Таким образом, волновая электростанция работает беспрерывно почти при любой погоде, а ток по подводному кабелю передается на берег. Некоторые типы ВЭС могут служить отличными волнорезами, защищая побережье от волн и позволяя таким образом экономить на сооружении бетонных волнорезов.
Специалистами лаборатории энергетики воды и ветра Северо-Восточного университета в Бостоне (США) разработан проект первой в мире океанской электростанции. Она будет сооружена во Флоридском проливе, где берет начало Гольфстрим. На его выходе из Мексиканского залива мощность водяного потока составляет 25 млн м 3/сек., что в 20 раз превышает суммарный расход воды во всех реках земного шара. По подсчетам специалистов, средства, вложенные в проект, окупятся в течение пяти лет. В этой уникальной электростанции для получения тока мощностью 38 кВт будет использоваться турбина Горлова. Эта геликоидная турбина имеет три спиральные лопасти и под действием потока воды вращается в 2-3 раза быстрее скорости течения. В отличие от многотонных металлических турбин, применяемых на речных гидроэлектростанциях, размеры изготовленной из пластика турбины Горлова невелики (диаметр - 50 см, длина - 84 см), масса ее всего 35 кг. Эластичное покрытие поверхности лопастей уменьшает трение о воду и исключает налипание морских водорослей и моллюсков. Коэффициент полезного действия турбины Горлова в три раза выше, чем у обычных турбин.

Геотермальная энергия
Подземное тепло планеты - довольно хорошо известный и уже применяемый источник “чистой” энергии. В России первая геоТЭС мощностью 5 МВт была построена в 1966 г. на юге Камчатки, в долине реки Паужетки. В 1980 г. ее мощность составляла уже 11 МВт. В Италии, в районах Ландерелло, Монте-Амиата и Травеле, работают 11 таких станций общей мощностью 384 МВт. ГеоТЭС действуют также в США (Калифорния, Долина Больших Гейзеров), Исландии (у озера Миватн), Новой Зеландии, Мексике и Японии. Столица Исландии Рейкьявик получает тепло исключительно от горячих подземных источников.
Геологи открыли, что раскаленные до 180°-200°С массивы на глубине 46 км занимают большую часть территории России, а с температурой до 100°-150°С встречаются почти повсеместно. Кроме того, на нескольких миллионах квадратных километров располагаются горячие подземные реки и моря с глубиной залегания до 3,5 км и температурой воды до 200°С (естественно, под давлением), так что, пробурив скважину, можно без всякой ТЭЦ получить фонтан пара и горячей воды.

Гидротермальная энергия
Кроме подземного, существует и водное тепло, не так распространенное в качестве источника энергии. Вода - это всегда хотя бы несколько градусов тепла, а летом она нагревается до 25°С. Для использования этого тепла необходима установка, действующая по принципу “холодильник наоборот”. Если пропускать воду через холодильный аппарат, то у нее тоже можно отбирать тепло. Горячий пар, который образуется в результате теплообмена, конденсируется, его температура поднимается до 110°С, а затем его можно направлять либо на турбины электростанций, либо на нагревание воды в батареях центрального отопления до 60°-65°С. В ответ на каждый киловаттчас затрачиваемой на это энергии природа возвращает 3 киловаттчаса. По тому же принципу можно получать энергию для кондиционирования воздуха при жаркой погоде.
Наиболее эффективны такие установки при больших перепадах температур. Все необходимые инженерные разработки уже проведены и опробованы экспериментально.

Энергетика сегодня и завтра
Сегодня около половины мирового энергобаланса приходится на долю нефти, около трети - на долю газа и атома (примерно по одной шестой) и около одной пятой - на долю угля. На все остальные источники энергии остается всего несколько процентов. Но там, где есть возможность, следует внедрять альтернативные источники энергии.
Следует отметить (и об этом неоднократно сообщала СиН), что, например, определенный опыт использования энергии ветра уже есть и в Беларуси.

В течение следующих десятилетий ожидается значительное увеличение энергопотребления, связанное с развитием экономики и приростом населения. Это приведет к росту давления на систему энергоснабжения и потребует повышенного внимания к эффективности использования энергии. Это проблемы современной энергетики, которые надо решать прямо сейчас. Доступность энергоресурсов является ключевым фактором для развития экономики и способствует улучшению качества жизни. Как правило, в основе прогнозов энергопотребления лежат такие факторы, как рост мировых экономик и увеличение численности населения, которые выступают в качестве основной движущей силы непрерывного роста энергопотребления. Эти достижения обеспечили возможность роста экономической активности опережающими темпами по отношению к росту энергопотребления.

Например, несмотря на то, что количество автомобилей в Китае за 2000¬2006 гг. увеличилось более чем в 2 раза, один автомобиль там приходится на 40 человек, в то время как в США данный показатель равен одному автомобилю на двух человек. Исходя из этого, можно с уверенностью прогнозировать дальнейший стремительный рост продаж автомобилей и объемов потребления топлива в Китае. Ускоряющиеся темпы потребления в сочетании с большой численностью населения, которая продолжает расти, позволяют сделать вывод о том, что новая волна роста энергопотребления в значительной степени придется на развивающиеся страны.

Человек только начинает осознавать ограниченность ископаемых ресурсов, в условиях необходимости рационального их использования. Нефти с 1960 по 1970 год было израсходовано столько же, сколько за предыдущие 100 лет. К 2030 году доля нефти как энергоносителя сократится до 16 %. Между тем из разведанных и эксплуатируемых скважин извлекалось до недавнего времени всего 30 % нефти. Уголь может снова стать важнейшим источником энергии. Другой альтернативой всё чаще называется - атомная энергия.

Плодами экономического роста пользуется порядка 15 % населения Земли (в основном, страны Запада), а энергетические ресурсы сосредоточены преимущественно в развивающихся странах. США, ЕЭС, Канада, Япония потребляют 1/2 всей мировой энергии, 1/3 удобрений, 2/3 всех металлов, 2/3 деловой древесины. Они же производят более 2/3 мирового валового продукта, обеспечивают 2/3 мировой торговли, выбрасывают 3/4 всех загрязнителей. Вложение энергии на 100 000 человек в Нидерландах составляет 914 пентаджоулей, Германии - 418, Великобритании - 355, Японии - 352, США - 74, в России - только 16. Борьба за обладание энергоресурсами часто кончается военными конфликтами. В современных условиях усилия в этих конфликтах все чаще направляются не на захват территорий противника, а на подавление военно-экономического потенциала - устранение «конкурента» и обеспечение господства победителя на рынках сырья и сбыта. Это мнение особенно актуально для сегодняшней ситуации в мире.

В настоящее время основными источниками энергии являются углеводороды и урановые руды. Их мировые запасы примерно уже известны, и, даже по самым оптимистическим оценкам, вряд ли разведка даст увеличение их объемов в разы. Поскольку известен и уровень потребления этих ресурсов, то уже подсчитан и срок, после которого они будут полностью исчерпаны. Очевидно, что никакой режим экономии невозобновляемых источников энергии не в состоянии исключить того момента в будущем, когда они будут полностью исчерпаны. Ситуация усугубляется при этом еще несколькими факторами.

Во-первых, экспоненциальным ростом промышленного производства. Так, в прошлом столетии совокупный объем промышленного производства в мире увеличивался в среднем каждые 20 лет. Если эта тенденция сохранится в ХХI в., то через 20 лет потребность в энергоресурсах вырастет в 2 раза, через 40 лет - в 4, к концу ХХI в. - в 32, к концу ХХII в. - в 1024 раза. А поскольку даже при сохранении потребления ресурсов на сегодняшнем уровне их хватит не более чем на несколько десятков лет, то прирост промышленности катастрофически ускоряет приближение всемирной ресурсной катастрофы.

В этом отношении переход к термоядерной энергии (возможно, и в более широком смысле - к плазменной энергетике вообще) - единственный из реально известных выходов из грядущего тупика. Но даже если термоядерные реакции в будущем удастся обуздать, останутся нерешенными другие проблемы современной энергетики.